
(More)	Fun	with	Pointers	and	Linked	Lists!	

CS	16:	Solving	Problems	with	Computers	I	
Lecture	#17	

	
Ziad	Matni	

Dept.	of	Computer	Science,	UCSB	

Administrative	

•  Homework	situation: 	 	NO	MORE	HOMEWORK!	J	
•  Labs: 	 	 	 	 	 	 	 	Lab10	due	on		Friday	

6/5/18	 Matni,	CS16,	Sp18	 2	

•  Material:	Everything!	
•  Homework,	Labs,	Lectures,	Textbook	
•  Tuesday,	6/12	in	this	classroom	
•  Starts	at	4:00pm	**SHARP**	
•  Duration:	3	hours	long		
•  BRING	YOUR	UCSB	IDs	PLEASE!	Arrive	10-15	minutes	early	
•  Closed	book:	no	calculators,	no	phones,	no	computers	
•  Only	1	sheet	SINGLE-SIDED	of	written	notes	
– Must	be	no	bigger	than	8.5”	x	11”	
–  You	have	to	turn	it	in	with	the	exam	

•  You	will	write	your	answers	on	the	exam	sheet	itself.	

Lecture	Outline	

•  More	exercises	using	pointers	and	linked	lists	

6/5/18	 Matni,	CS16,	Sp18	 4	

Exercise	Example 	1	

•  We’ve	already	demonstrated	how	to	add	nodes	to	a	LL,	but	
what	about	deleting	them?	

6/5/18	 Matni,	CS16,	Sp18	 5	

Figure	Out	the	Algorithm!	

Regular	case:	
h	-> 	 	 			->	 	 						->	 	 	 	->	NULL	
	
How	do	I	remove	“B”	from	the	LL?	And	get	to:	
h	-> 	 	 			-> 	 	 	->	NULL	 	???	

6/5/18	 Matni,	CS16,	Sp18	 6	

Value	
A	 lin

k	 Value	
B	 lin

k	

Value	
A	 lin

k	

Value	
C	 lin

k	

Value	
C	 lin

k	

Algorithm	for	Deletion	

h	-> 	 	 			->	 	 						-> 	 	 				->	NULL	
	
1.  Find	the	node	to	delete	

a)  Either	by	the	value	(or	one	of	the	values)	in	the	node	
b)  Or	by	its	position	in	the	linked	list	

2.  Get	a	pointer	to	point	to	that	node	(call	it	current)	
3.  Get	a	pointer	to	point	to	the	node	before	it	(call	it	previous)	

6/5/18	 Matni,	CS16,	Sp18	 7	

Value	
A	 lin

k	 Value	
B	 lin

k	 Value	
C	 lin

k	

Algorithm	for	Deletion	

h	-> 	 	 			->	 	 						-> 	 	 				-	>	NULL	
	 		
					previous 			current	

	
4.  Have	previous->link	be	pointing	to	what’s	after	current	
5.  Should	I	make	current->link	point	to	NULL?	
	
h	-> 	 	 				 	 	 	 	 	 	 				->	NULL	

	 		
					previous 			current	

	
6/5/18	 Matni,	CS16,	Sp18	 8	

Value	
A	 lin

k	 Value	
B	 lin

k	 Value	
C	 lin

k	

Value	
A	 lin

k	 Value	
B	 lin

k	 Value	
C	 lin

k	
What	happens	to	Node	“B”??	
You	have	to	“de-allocate”	it	
from	memory	
	
Use:	delete(current)	

Edge	Cases	

•  Will	our	algorithm	work	for	ALL	cases	of	a	linked	list?	

•  What	about:	
1.  The	node	to	delete	is	a	the	start	of	the	linked	list?	
2.  The	node	to	delete	is	a	the	tail	of	the	linked	list?	
3.  If	the	linked	list	has	only	ONE	component?	
4.  If	the	linked	list	has	NO	components	(h	->	NULL)?	
5.  If	I	CAN’T	FIND	my	intended	node	to	delete?	
– Other	situations???	

6/5/18	 Matni,	CS16,	Sp18	 9	

Edge	Case	1	

Case	of:							h	->	(DeleteThis)	->	NodeX	->	NodeY	…	etc	…	

•  Can	I	just	skip	the	first	node	in	a	simple	way?	
– Yes!	

•  So	it’s	a	“special	case”…	

6/5/18	 Matni,	CS16,	Sp18	 10	

Edge	Case	2	

Case	of:							h	->	NodeX	->	NodeY	->	(DeleteThis)	->	NULL	

•  Can	I	make	previous	=	pointer	to	NodeY?	
•  Can	I	make	current	=	pointer	to	“DeleteThis”	node?	

•  Yes	and	yes	
•  So…	no	“special	case”…	

6/5/18	 Matni,	CS16,	Sp18	 11	

Recall:	
4.  Have	previous->link	be	pointing	to	what’s	after	current	

Edge	Case	3	

Case	of:							h	->	(DeleteThis)	->	NULL	
	
•  Is	this	different	from	Case	1?	

•  No	

6/5/18	 Matni,	CS16,	Sp18	 12	

Edge	Case	4	

Case	of:							h	->	NULL	
•  Should	I	even	try?	
– No	

•  How	do	I	check	for	this?	
– Hmmmm….	

•  “Special	case”…	

6/5/18	 Matni,	CS16,	Sp18	 13	

Edge	Case	5	

•  What	if	the	search	criteria	fails?	
–  I	cannot	find	a	node	at	that	position	
–  I	cannot	find	a	node	value	equal	to	my	target	value	

•  Sounds	like	a	modification	to	my	“while	loop”…	

•  Would	the	requirements	for	edge	case	4	fit	into	this?	
– Yes	

6/5/18	 Matni,	CS16,	Sp18	 14	

Entire	Algorithm	
1.  Have	head	and	target	defined	(passed	into	function)	
2.  Create	2	pointers	to	nodes:	current	=	previous	=	head	
3.  If	(head	==	NULL):	

a)  Empty	list	–	nothing	to	find	
b)  Return	

4.  Otherwise	(head	!=	NULL):	
a)  Advance	thru	the	LL	with	a	while	loop	

i.  	previous	=	current	and	current	=	current	->	next	

b)  If	(current	=	NULL),	then	we	didn’t	find	anything	(special	case:	target	not	found)	
i.  Return	

c)  If	(current	==	head),	then	our	target	is	at	the	head	(special	case:	skip	first	node)	
a)  Adjust	head	to	head->next	

d)  Otherwise,	it’s	the	“regular	case”:	previous->link	=	current->link	
e)  Delete	the	node	from	memory!	(i.e.	delete(current))	

6/5/18	 Matni,	CS16,	Sp18	 15	

Entire	Code	Revealed	
void	deleteNode(NodePtr	&head,	int	target)	
{	

	NodePtr	curr	=	head,	prev	=	head;	
		
	if(head	==	NULL)	
	 	cout<<"Nothing	to	delete.\n";	
		
	else	
	{	

		 	 	while	
((curr	!=	NULL)	&&	(curr->data	!=	target))	
		 	 	{	
					 	 	prev	=	curr;	
					 	 	curr	=	curr->next;	
		 	 	}	//	end	while	
	
		 	 		

6/5/18	 16	

	//	Special	Case:	target	not	found	
	if(curr	==	NULL)	
	{	
	 	cout	<<		
	"Node	not	found	–	nothing	to	delete.\n";	
	 	return;	
	}	

	
	//	Special	Case:	target	found	at	head	of	LL	
	if(curr	==	head)	
	 	head	=	head->next;	
	//	Regular	case:	
	else	
	 	prev->next	=	curr->next;	
	//	Free	up	that	now	deleted	node	in	memory! 	
	delete(curr);	
	}	//	end	else	

}	//	end	deleteNode	

Demo	Code!	

Exercise	Example 	2	

•  We’ve	already	demonstrated	how	to	build	a	linked	list	using	
the	“add	to	head”	approach,	like:	

h	->	NULL	
h	->													->	NULL	
h	->													-> 		 	 	 	->	NULL	
h	->													-> 	 	 	 	-> 	 	 	 	->	NULL	
	
6/5/18	 Matni,	CS16,	Sp18	 17	

Value	
A	 lin

k	

Value	
B	 lin

k	

Value	
C	 lin

k	

Value	
A	 lin

k	

Value	
B	 lin

k	 Value	
A	 lin

k	

Exercise	Example 	2	

•  What	would	it	be	like	to	build	a	linked	list	by	putting	new	
nodes	at	the	tail	instead?	(without	using	reversing)	

h	->	NULL	
h	->													->	NULL	
h	->													-> 		 	 	 	->	NULL	
h	->													-> 	 	 	 	-> 	 	 	 	->	NULL	
	
6/5/18	 Matni,	CS16,	Sp18	 18	

Value	
A	 lin

k	

Value	
A	 lin

k	

Value	
A	 lin

k	

Value	
B	 lin

k	

Value	
B	 lin

k	 Value	
C	 lin

k	

Figure	Out	the	Algorithm!	

Regular	case:	
h	-> 	 	 			->	 	 						->	NULL	
	
Here’s	the	node… 	 	 	 			How	do	I	get	this	in	the	LL?	
	
Edge	case:	
h	->	NULL	
	 	 	 	 	 	???	Do	I	do	anything	different	here?	

6/5/18	 Matni,	CS16,	Sp18	 19	

Value	
A	 lin

k	 Value	
B	 lin

k	

Value	
C	 lin

k	

YOUR	TO-DOs	

q Lab	10	due	on	Friday	
q NO	HOMEWORK!!	

q Prepare	for	final	exam	and	come	with	questions	on	Thursday!	

q Visit	TAs‘	office	hours	if	you	need	help!	

6/5/18	 Matni,	CS16,	Sp18	 20	

6/5/18	 Matni,	CS16,	Sp18	 21	

