
Recursion	in	C++	

CS	16:	Solving	Problems	with	Computers	I	
Lecture	#16	

	
Ziad	Matni	

Dept.	of	Computer	Science,	UCSB	

Lecture	Outline	

•  Linked	Lists:	solution	to	homework	#13	

•  Recursion	in	C++	

5/31/18	 Matni,	CS16,	Sp18	 2	

5/31/18	 Matni,	CS16,	Sp18	 3	

#include	<iostream>	
using	namespace	std;	
	
struct	Node	
{	

	int	data;	
	Node	*link;	

};	
	
Typedef	Node*	NodePtr;	
NodePtr	search(NodePtr	head,	int	target);	
	
int	main()	
{	

	…	
	…	
	someptr	=	search(head,	6);	
	…	
	return	0;	}	

NodePtr	search(NodePtr	head,	int	target)	
{	

	NodePtr	here	=	head;	
	

	if	(here	==	NULL)	
	 	return	NULL;	
	else	
	{	

//go	thru	the	linked	list	and	look	for	target	
	 	while	((here->data	!=	target)	&&		
	 	 	 	 	 	(here->link	!=	NULL))	
	 	 	here	=	here->link;	

	
//the	while	loop	stopped	b/c	it	either	
//	found	target	or	it	found	nothing	

	 	if	(here->data	==	target)	
	 	 	return	here;	
	 	else	
	 	 	return	NULL;	
	}	

}	

Translating	search	to	C++	

Other	Functions	We	Might	Create	for	LLs…	

•  Insert	node	at	the	head	
•  Print	out	all	the	values	in	the	LL	
•  Search	the	LL	for	a	target	

•  Insert	node	at	the	end	of	LL	
•  Insert	node	anywhere	in	the	LL	
•  Delete	a	node	according	to	some	target	value	criteria	
•  Sort	an	LL	according	to	some	target	value	criteria	
etc…	

5/31/18	 Matni,	CS16,	Sp18	 4	

5/31/18	 Matni,	CS16,	Sp18	 5	

5/31/18	 Matni,	CS16,	Sp18	 6	

A child couldn't sleep,
so her mother told a story about a little frog,

 who couldn't sleep,
so the frog's mother told a story about a little bear,

 who couldn't sleep,
so bear's mother told a story about a little weasel

 ...who fell asleep.
 ...and the little bear fell asleep;
 ...and the little frog fell asleep;

...and the child fell asleep.

Recursive	Functions	

•  Recursive:	(adj.)	Repeating	unto	itself	
•  A	recursive	function	contains	a	call	to	itself	

•  When	breaking	a	task	into	subtasks,		
	 	 	 	 	 	it	may	be	that	the	subtask		
	 	 	 	 	 	 	 	 				is	a	smaller	example		
	 	 	 	 	 	 	 	 	 	 					of	the	same	task	

5/31/18	 Matni,	CS16,	Sp18	 7	

Example:	The	Factorial	Function	

Recall:	 	 	 	x!		=		1	*	2	*	3	…	*	x	
You	could	code	this	out	as	either:	
•  A	loop:		
	 	(for	k=1;	k	<	x;	k++)	{	factorial	*=	k;	}	
	
•  Or	a	recursion/repetition:	

	factorial(x)		=	x	*	factorial(x-1) 	 		
	 	 	=	x	*	(x-1)	*	factorial	(x-2)	
	 	 	=	etc…			
	until	you	get	to	factorial(1)	(then	what?!?)	

5/31/18	 Matni,	CS16,	Sp18	 8	

Example:	Recursive	Formulas	
•  Recall	from	Math,	that	you	can	create	a	recursive	formula	from	a	sequence	
Example:	
•  Consider	the	arithmetic	sequence:		

5,	10,	15,	20,	25,	30,	…	
•  I	note	that	I	can	write	each	number	in	the	sequence	as:	

	an	=	an-1	+	5 	 	(n	being	the	position)	
	

For	example:			a4	=	a3	+	5		
	 	 	 	 	=	(a2	+	5)	+	5		
	 	 	 	 	=	((a1	+	5)	+	5)	+	5		 	ß	At	this	point,	I	need	to	designate	a1	as	5	
	 	 	 	 	=	(5	+	5	+	5	+	5)	=	20	

5/31/18	 Matni,	CS16,	Sp18	 9	

The	Base	Case	

•  If	we	assume	that	we	start	the	sequence	at	n	=	1…	(an	arbitrary	value)	
	 	 	…	then	we	could	devise	an	algorithm	for	a(n)	like	this:	

1.  If	n	=	1,	then	return	5	to	a(n)	
2.  Otherwise,	return	a(n-1)	+	5	

•  I’ll	need	to	know	what	that	base	case	is,	otherwise	I	risk	not	ending	my	
recursion	(or	not	making	sense	of	it)	

5/31/18	 Matni,	CS16,	Sp18	 10	

an	=	an-1	+	5		

The	BASE	case	

The	RECURSION	(i.e.	the	function	calling	itself)	

Case	Study:	Vertical	Numbers	

•  Problem	Definition:	
Write	a	recursive	function	that	takes	an	
integer	number	and	prints	it	out	
one	digit	at	a	time	vertically	:	

void	write_vertical(int	n);	
//Precondition:		n	>=	0	
//Postcondition:	n	is	written	to	the	screen	vertically	
//	 	 				with	each	digit	on	a	separate	line	

5/31/18	 Matni,	CS16,	Sp18	 11	

Case	Study:	Vertical	Numbers	

Analysis:	
•  Take	a	decimal	number,	like	543.	
•  How	do	I	separate	the	digits	from	each	other?	

– So	that	I	can	print	out	5,	then	4,	then	3?	

•  Hint:	Note	that	543	=	500	+	40	+	3	

5/31/18	 Matni,	CS16,	Sp18	 12	

Case	Study:	Vertical	Numbers	

Algorithm	design	
•  Simplest	case		 	 	(what	do	we	call	that	again???)	
								If	n	is	1	digit	long,	just	write	the	number	

•  More	typical	case:	
								1)	Output	all	but	the	last	digit	vertically	 	(recursion!)		
								2)	Write	the	last	(least	significant)	digit	 	(base	case!)	
–  Step	1	is	a	smaller	version	of	the	original	task	-	The	recursive	case	
–  Step	2	is	the	simplest	case	-	The	base	case	

5/31/18	 Matni,	CS16,	Sp18	 13	

Case	Study:	Vertical	Numbers	
The	write_vertical	algorithm:	

void	write_vertical(int	n)		
{	

	if	(n	<	10)			cout	<<	n	<<	endl;	
	//	n	<	10	means	n	is	only	one	digit	

	
	else		//	n	is	two	or	more	digits	long	
	{	
	 	write_vertical(n-with-the-least-significant-digit-removed);	
	 	cout	<<	the	least-significant	digit	of	n	<<	endl;	
	}	

}	

5/31/18	 Matni,	CS16,	Sp18	 14	

Case	Study:	Vertical	Numbers	

•  Note	that:	n	/	10		(integer	division)		
returns	n	with	just	the	least-significant	digit	removed		
–  So,	for	example,	85	/	10	=	8					or							124	/	10	=	12	
	

•  Whereas:	n	%	10	returns	the	least-significant	digit	of	n	
–  In	this	example,	124	%	10	=	4	

•  How	might	we	combine	these	in	the	previous	function?	

5/31/18	 Matni,	CS16,	Sp18	 15	

void	write_vertical(int	n)		
{	

	if	(n	<	10)	cout	<<	n	<<	endl;	
	 	else	
		 	{	
								write_vertical	

	 	(n-without-last-digit);	
								cout	<<	LSD	<<	endl;	
		 	}	
}	

Case	Study:	Vertical	Numbers	

The	write_vertical	function	in	C++	

void	write_vertical(int	n)		
{	

	if	(n	<	10)			cout	<<	n	<<	endl;	
	 	//	n	<	10	means	n	is	only	one	digit	
	

	else		//	n	is	two	or	more	digits	long	
			{	
								write_vertical(n	/	10);	
								cout	<<	(n	%	10)	<<	endl;	
			}	
}	

5/31/18	 Matni,	CS16,	Sp18	 16	

Example	Run	

5/31/18	 Matni,	CS16,	Sp18	 17	

		
write_vertical(543)	
	 			

write_vertical(54)	
	 			

write_vertical(5)	
	 		

cout	<<	5	<<	endl;	

void	write_vertical(int	n)		
{	

	if	(n	<	10)	cout	<<	n	<<	endl;	
	 	else	
		 	{	
								write_vertical(n	/	10);	
								cout	<<	n	%	10	<<	endl;	
		 	}	
}	

cout	<<	4	<<	endl;	

cout	<<	3	<<	endl;	

stdout:	
5	
4	
3	

①	

②	

③	

④	

⑤	

“Infinite”	Recursion	
•  A	function	that	never	reaches	a	base	case,	in	theory,	will	run	forever	

–  Why	“in	theory”?	

•  What	if	we	wrote	the	function	write_vertical,	without	the	base	case	
												 	void	write_vertical(int	n)		

	{	
							 		 	write_vertical	(n	/	10);	
										 		 	cout	<<	n	%	10	<<	endl;			

	}	
•  Will	eventually	call	write_vertical(0),		

	 	which	will	call	write_vertical(0),	
	 	 	which	will	call	write_vertical(0),		
	 	 	 	which	will	call	write_vertical(0),		

5/31/18	 Matni,	CS16,	Sp18	 18	

which	will	call	write_vertical(0),		
	which	will	call	write_vertical(0),		
	 	which	will	call	write_vertical(0),		
	 	 	which	will	call	write_vertical(0),		
	 	 	 	which	will	call	write_vertical(0),		
	 	 	 	 	which	will	call	write_vertical(0),		
	 	…etc…	

“Infinite”	Recursion	

•  In	practice,	the	computer	will	often	run	out	of	resources		
(i.e.	memory	usually)	and	the	program	will	terminate	abnormally	
– This	can	happen	even	in	non-infinite	recursion	situations!		
	 	 	 	 	 	 	(can	you	think	of	a	case	where	this	could	happen?)	

•  So…	remember	that	computers	are	machines,	not	Math	Gods	
and	design	your	(recursive)	functions	with	that	in	mind!	

5/31/18	 Matni,	CS16,	Sp18	 19	

Stacks	for	Recursion	
•  Computers	use	a	memory	structure	called	a	stack	to	keep	track	of	recursion	
•  Stack:	a	computer	memory	structure	analogous	to	a	stack	of	paper	

–  Start	at	zero:	no	papers,	just	knowledge	of	where	to	start	(via	a	“stack	pointer”)	

–  To	place	data	on	the	stack:	write	it	on	a	piece	of	paper	and	place	it	on	top	of	the	stack	
–  To	insert	more	information	on	the	stack:	use	a	new	sheet	of	paper,	write	the	information,	
and	place	it	on	the	top	of	the	stack	

–  Keep	going…	until	you	don’t…		

–  To	retrieve	information:	you	can	only	take	the	top	sheet	of	paper	
•  Then	throw	it	away	when	it	you’re	done	“reading”	it	

–  If	you	want	access	to	any	paper	farther	down,	go	thru	the	stack	to	get	to	it	

5/31/18	 Matni,	CS16,	Sp18	 20	

LIFO	

•  This	scheme	of	handling	sequential	data	in	a	stack	is	called:	
Last	In-First	Out	(LIFO)	

•  When	we	put	data	in	a	LIFO,	we	call	it	a	push	
•  When	we	pull	data	out	of	a	LIFO,	we	call	it	a	pop	

•  The	other	common	scheme	in		
data	organization	is	FIFO	(First	In-First	Out)	
aka	queue	

5/31/18	 Matni,	CS16,	Sp18	 21	

Stacks	&	Making	the	Recursive	Call	

When	execution	of	a	function	definition	reaches	a	recursive	call…	
1.  Execution	is	paused	
2.  Data	is	then	saved	in	a	new	place	in	the	stack	on	top	
•  Remember,	this	is	part	of	computer	memory	

3.  Then,	a	new	place	in	memory	is	“prepared”	for	the	recursive	call	
a)  A	new	function	definition	is	written,	arguments	are	plugged	into	parameters	
b)  Execution	of	the	recursive	call	begins	

4.  New	data	is	saved	on	top	of	the	stack	
5.  Repeat	until	you	get	to	the	base	case	

5/31/18	 Matni,	CS16,	Sp18	 22	

RF(4)	

RF(3)	

RF(2)	

STACK	

RF(1)	
Base	Case	

Stacks	&	Ending	Recursive	Calls	

When	a	recursive	function	call	gets	to	the	base	case…	
1.  The	computer	retrieves	the	top	memory	unit	of	the	stack	
2.  It	resumes	computation	based	on	the	information	on	the	sheet	
3.  When	that	computation	ends,	that	memory	unit	is	“discarded”	
4.  The	mem.	unit	on	the	stack	is	retrieved	so	that	processing	can	

resume	
5.  The	process	continues	until	the	stack	is	back	to	it	original	status	

5/31/18	 Matni,	CS16,	Sp18	 23	

RF(4)	

RF(3)	

RF(2)	

STACK	

RF(1)	
Base	Case	

Stack Overflow

•  Stacks	are	finite	things…	
•  Infinite	recursions	can	force	the	stack		
	 	 	 	 	 	to	grow	beyond	its	physical	limits	

•  The	result	of	this	erroneous	operation	is	called	a	stack	overflow	
–  This	causes	abnormal	termination	of	the	program	

5/31/18	 Matni,	CS16,	Sp18	 24	Image	from	stackoverflow.com	

Recursive	Functions	for	Values	

•  Recursive	functions	don’t	have	to	be	void	types	
–  They	can	also	return	values	

•  The	technique	to	design	a	recursive	function	that	returns	a	
value	is	basically	the	same	as	what	we	described	earlier…	

5/31/18	 Matni,	CS16,	Sp18	 25	

Program	Example:	A	Powers	Function	
Example:	Define	a	new	power	function	(not	the	one	in	<cmath>)	
•  Let	it	return	an	integer,	23	,when	we	call	the	function	as:		int	y	=	power(2,3);	

	 	 	 	 		

•  Use	the	following	definition:						xn	=	xn-1	*	x 	 	 	i.e.	23	=	22	*	2	
–  Note	that	this	only	works	if	n	is	a	positive	number	

•  Translating	the	right	side	of	that	equation	into	C++	gives:	power(x,	n-1)	*	x	
–  What	is	the	base/stopping	case?	

	 	 	 	 	 	 	 	It’s	when	n	=	0		
–  What	should	happen	then?	

	 	 	 	 	 	 	 	power()	should	return	1	

5/31/18	 Matni,	CS16,	Sp18	 26	

Tracing	power(2,	3)	

	 	 	 	1	
	
power(2,	0)	*	2	
	
power(2,	1)	*	2	
	
power(2,	2)	*	2	
	
power(2,	3)	

5/31/18	 Matni,	CS16,	Sp18	 27	

pushing	into	
the	stack	

	 	 	 	1	
	
	 	 	 	1	*	2	

	
	 	 	 	2	*	2	

	
	 	 	 	4	*	2	

	
	 	 	 	=			8	

popping	out	
of	the	stack	

5/31/18	 Matni,	CS16,	Sp18	 28	

Stopping	case	

int	power(int	x,	int	n)	
{	
	//	Before	you	do	a	base-case,	you	should	take	care	of	
	//	“illegal”	operations…	
	if	(n	<	0)	
	{	
	 	cout	<<	“Cannot	use	negative	powers	in	this	function!\n”;	
	 	exit(1);	
	}	

	
	if	(n	>	0)	
	 	return	(power(x,	n	–	1)	*	x);	

	
	else		//	i.e.	if	n	==	0	
	 	return	(1);	

}	

Recursion	versus	Iteration	

•  Any	task	that	can	be	accomplished	using	recursion		
can	also	be	done	without	recursion	(using	loops)	

•  A	non-recursive	version	of	a	repeating	function	is	
called	an	iterative-version		

5/31/18	 Matni,	CS16,	Sp18	 29	

Recursion	versus	Iteration	

•  A	recursive	version	of	a	function…	
– Usually	runs	a	little	slower,	takes	up	more	memory	
– BUT	it	uses	code	that	is	easier	to	write	and	understand	

5/31/18	 Matni,	CS16,	Sp18	 30	

int	power(int	x,	int	n)	
{	
				if	(n	==	0)	return(1);	
				else	return(power(x,	n	-	1)	*	x);	
}	

int	power(int	x,	int	n)	
{		
				int	p	=	1;	
				for	(int	k	=	1;	k	<=	n;	k	++)		
								p	*=	x;	
	
				return(p);	
}	

Recursive	Version	

Iterative	Version	

YOUR	TO-DOs	

q Turn	in	Lab	9	on	Monday	
q Do	HW14	by	Tuesday	
q New	(AND	LAST)	lab	next	week:	Lab	10	

q Visit	Prof’s	and	TAs‘	office	hours	if	you	need	help!	

5/31/18	 Matni,	CS16,	Sp18	 31	

5/31/18	 Matni,	CS16,	Sp18	 32	

