Recursion in C++

CS 16: Solving Problems with Computers I
Lecture \#16
Ziad Matni
Dept. of Computer Science, UCSB

Lecture Outline

- Linked Lists: solution to homework \#13
- Recursion in C++

```
#include <iostream>
using namespace std;
{
    int data;
    Node *link;
};
Typedef Node* NodePtr;
NodePtr search(NodePtr head, int target);
int main()
{
    ...
    ..
    someptr = search(head, 6);
    return 0; }
    {
        NodePtr here = head;
        if (here == NULL)
        return NULL;
    else
    {
//go thru the linked list and look for target
        while ((here->data != target) &&
                                    (here->link != NULL))
            here = here->link;
//the while loop stopped b/c it either
// found target or it found nothing
        if (here->data == target)
            return here;
        else
            return NULL;
    }
}
```

```
```

NodePtr search(NodePtr head, int target)

```
```

```
```

NodePtr search(NodePtr head, int target)

```
```

```
```

NodePtr search(NodePtr head, int target)

```
```

```
struct Node
```

```
struct Node
```


Translating search to C++

Other Functions We Might Create for LLs...

- Insert node at the head
- Print out all the values in the LL
- Search the LL for a target
- Insert node at the end of LL
- Insert node anywhere in the LL
- Delete a node according to some target value criteria
- Sort an LL according to some target value criteria etc...

A child couldn't sleep,

 so her mother told a story about a little frog, who couldn't sleep,so the frog's mother told a story about a little bear; who couldn't sleep,
so bear's mother told a story about a little weasel ...who fell asleep.
mand the little bear fell asleep; ...and the little frog fell asleep;
..-and the child fell asleep.

Recursive Functions

- Recursive: (adj.) Repeating unto itself
- A recursive function contains a call to itself
- When breaking a task into subtasks, it may be that the subtask is a smaller example of the same task

Example: The Factorial Function

Recall: $\quad x!=1$ *2*3 ... *x
You could code this out as either:

- A loop:
(for $k=1 ; k<x ; k++$) \{ factorial $*=k ;$ \}
- Or a recursion/repetition:

$$
\begin{aligned}
& \text { factorial }(x)=x^{*} \text { factorial }(x-1) \\
& \quad=x^{*}(x-1) * \text { factorial }(x-2) \\
& =\text { etc... }
\end{aligned}
$$

Example: Recursive Formulas

- Recall from Math, that you can create a recursive formula from a sequence Example:
- Consider the arithmetic sequence:

$$
5,10,15,20,25,30, \ldots
$$

- I note that I can write each number in the sequence as:

$$
a_{n}=a_{n-1}+5 \quad \text { (} n \text { being the position) }
$$

For example: $a_{4}=a_{3}+5$

$$
\begin{aligned}
& =\left(a_{2}+5\right)+5 \\
& =\left(\left(a_{1}+5\right)+5\right)+5 \quad \leftarrow \text { At this point, I need to designate } a_{1} \text { as } 5 \\
& =(5+5+5+5)=\mathbf{2 0}
\end{aligned}
$$

The Base Case

$$
a_{n}=a_{n-1}+5
$$

- If we assume that we start the sequence at $\mathrm{n}=1$... (an arbitrary value) ... then we could devise an algorithm for a(n) like this:

1. If $n=1$, then return 5 to $a(n)$
2. Otherwise, return $a(n-1)+5$

The BASE case
The RECURSION (i.e. the function calling itself)

- I'll need to know what that base case is, otherwise I risk not ending my recursion (or not making sense of it)

Case Study: Vertical Numbers

- Problem Definition:

Write a recursive function that takes an integer number and prints it out one digit at a time vertically :

```
write_vertical(3):
3
write_vertical(12):
1
2
write_vertical(123):
1
2
3
```

void write_vertical(int n);
//Precondition: n >= 0
//Postcondition: n is written to the screen vertically
// with each digit on a separate line

Case Study: Vertical Numbers

Analysis:

- Take a decimal number, like 543.
- How do I separate the digits from each other?
- So that I can print out 5 , then 4 , then 3 ?
- Hint: Note that $543=500+40+3$

Case Study: Vertical Numbers

Algorithm design

- Simplest case (what do we call that ogain???) If \boldsymbol{n} is 1 digit long, just write the number
- More typical case:

1) Output all but the last digit vertically (recursion!)
2) Write the last (least significant) digit (base case!)

- Step 1 is a smaller version of the original task - The recursive case
- Step 2 is the simplest case - The base case

Case Study: Vertical Numbers

The write_vertical algorithm:

```
    void Write_vertical( int n )
        if (n < 10) cout << n << endl;
        // n < 10 means n is only one digit
        else // n is two or more digits long
        {
        *rite_vertical(n-with-the-least-significant-digit-removed);
            cout << the least-significant digit of n << endl;
        }
    }
```


Case Study: Vertical Numbers

- Note that: $\mathrm{n} / 10$ (integer division)

```
void write_vertical( int n )
{
```

```
    if (n < 10) cout << n << endl;
```

 if (n < 10) cout << n << endl;
 else
 else
 {
 {
 write_vertical
 write_vertical
 (n-without-Last-digit);
 (n-without-Last-digit);
 cout << LSD << endl;
    ```
    cout << LSD << endl;
```

returns n with just the least-significant digit removed

- So, for example, $85 / 10=8$ or $124 / 10=12$
- Whereas: $\mathrm{n} \% 10$ returns the least-significant digit of \boldsymbol{n}
- In this example, $124 \% 10=4$
- How might we combine these in the previous function?

Case Study: Vertical Numbers

The write_vertical function in C++

```
void write_vertical( int n )
{
    if (n < 10) cout << n << endl;
    // n < 10 means n is only one digit
    else // n is two or more digits long
    {
        write_vertical(n / 10);
        cout << (n % 10) << endl;
    }
}
```


Example Run

if ($n<10$) cout $\ll n \ll$ endl; else
 write_vertical(n / 10); cout << n \% 10 << endl;

write_vertical(543) (1)
write_vertical(54) $\xrightarrow[(2)]{(4)}$ cout $\ll 4 \ll$ endl;
write_vertical(5) $\longrightarrow(3)$ cout $\ll 5 \ll$ endl;

stdout:

5
4
3

"Infinite" Recursion

- A function that never reaches a base case, in theory, will run forever
- Why "in theory"?
- What if we wrote the function write_vertical, without the base case

```
void write_vertical(int n)
        {
```

```
                write_vertical (n / 10);
```

 write_vertical (n / 10);
 cout << n % 10 << endl;
    ```
        \}
- Will eventually call write_vertical(0), which will call write_vertical(0), which will call write_vertical(0), which will call write_vertical(0),
which will call write_vertical(0), which will call write_vertical(0), which will call write_vertical(0), which will call write_vertical(0),
which will call write_vertical(0), which will call write_vertical(0),

\section*{"Infinite" Recursion}
- In practice, the computer will often run out of resources (i.e. memory usually) and the program will terminate abnormally
- This can happen even in non-infinite recursion situations!
(can you think of a case where this could happen?)
- So... remember that computers are machines, not Math Gods and design your (recursive) functions with that in mind!

\section*{Stacks for Recursion}
- Computers use a memory structure called a stack to keep track of recursion
- Stack: a computer memory structure analogous to a stack of paper
- Start at zero: no papers, just knowledge of where to start (via a "stack pointer")
- To place data on the stack: write it on a piece of paper and place it on top of the stack
- To insert more information on the stack: use a new sheet of paper, write the information, and place it on the top of the stack
- Keep going... until you don't...
- To retrieve information: you can only take the top sheet of paper
- Then throw it away when it you're done "reading" it
- If you want access to any paper farther down, go thru the stack to get to it

\section*{LIFO}
- This scheme of handling sequential data in a stack is called:

\section*{Last In-First Out (LIFO)}
- When we put data in a LIFO, we call it a push
- When we pull data out of a LIFO, we call it a pop
- The other common scheme in data organization is FIFO (First In-First Out) aka queue

\section*{SFRBA}


LIFO (Last In First Out)

\section*{Stacks \& Making the Recursive Call}

When execution of a function definition reaches a recursive call...
1. Execution is paused
2. Data is then saved in a new place in the stack on top
- Remember, this is part of computer memory
3. Then, a new place in memory is "prepared" for the recursive call
a) A new function definition is written, arguments are plugged into parameters
b) Execution of the recursive call begins
4. New data is saved on top of the stack
5. Repeat until you get to the base case
\begin{tabular}{|c|}
\hline Base Case \\
\hline\(R F(1)\) \\
\hline\(R F(2)\) \\
\hline\(R F(3)\) \\
\hline\(R F(4)\) \\
\hline
\end{tabular}

\section*{Stacks \& Ending Recursive Calls}

When a recursive function call gets to the base case...
1. The computer retrieves the top memory unit of the stack
2. It resumes computation based on the information on the sheet
3. When that computation ends, that memory unit is "discarded"
4. The mem. unit on the stack is retrieved so that processing can resume
5. The process continues until the stack is back to it original status


\section*{Stack Overflow}
- Stacks are finite things...
- Infinite recursions can force the stack to grow beyond its physical limits
- The result of this erroneous operation is called a stack overflow
- This causes abnormal termination of the program

\section*{Recursive Functions for Values}
- Recursive functions don't have to be void types
- They can also return values
- The technique to design a recursive function that returns a value is basically the same as what we described earlier...

\section*{Program Example: A Powers Function}

Example: Define a new power function (not the one in <cmath>)
- Let it return an integer, \(2^{3}\), when we call the function as: int \(y=\operatorname{power}(2,3)\);
- Use the following definition: \(x^{n}=x^{n-1 *} x \quad\) i.e. \(2^{3}=2^{2} * 2\)
- Note that this only works if n is a positive number
- Translating the right side of that equation into C++ gives: power(x, n-1) * x
- What is the base/stopping case?

It's when \(n=0\)
- What should happen then?
power \((2,0) * 2\)
power \((2,1) * 2\)
\(\operatorname{power}(2,2) * 2\)
\(\operatorname{power}(2,3)\)
```

int power(int x, int n)
{
// Before you do a base-case, you should take care of
// "illegal" operations...
if (n < 0)
{
cout << "Cannot use negative powers in this function!\n";
exit(1);
}
if (n > 0)
return (power(x, n - 1) * x);
else // i.e. if n == 0
return (1);
}

```

\section*{Recursion versus Iteration}
- Any task that can be accomplished using recursion can also be done without recursion (using loops)
- A non-recursive version of a repeating function is called an iterative-version

\section*{Recursion versus Iteration}
int power(int \(x\), int \(n\) )
\{
if (n == 0) return(1);
else return( \(\operatorname{power}(x, n-1) * x\) );
\}
Recursive Version
- A recursive version of a function...
- Usually runs a little slower, takes up more memory
- BUT it uses code that is easier to write and understand

\section*{YOUR TO-DOs}
\(\square\) Turn in Lab 9 on Monday
\(\square\) Do HW14 by Tuesday
\(\square\) New (AND LAST) lab next week: Lab 10
\(\square\) Visit Prof's and TAs' office hours if you need help!
\&/LECTURE```

