Exercises with Linked Lists

CS 16: Solving Problems with Computers |
Lecture #15

Ziad Matni
Dept. of Computer Science, UCSB

Nodes and Pointers
head

The head of a List =%

The box labeled head, in Display 13.1,
is not a node, but simply a pointer variable that

points to a node _y_

end marker

Pointer variable head is declared as: struct ListNode
{

string item;

ListNodePtr head; int count;

ListNode *1ink;
¥

typedef ListNode* ListNodePtr;
ListNodePtr head;

5/29/18 Matni, CS16, Sp18

Nodes and Pointers
head it mrorrse |

Accessing ltems in a Node |-

*1ink

* Looking at this example: one way to change the
number in the first node from 10 to 12: 3
(*head).count = 12;

head is a pointer variable to a node, o
so *head is the node that head points to end marke

struct ListNode
{
The parentheses are necessary because the dot string item;
. int t;
operator (.) has higher precedence than the e s
% istNode *1ink;
dereference operator (*) ¥

typedef ListNode* ListNodePtr;
ListNodePtr head;

5/29/18 Matni, CS16, Sp18

Nodes and Pointers
head it nporrse |

The Arrow Operator I e

*1ink

 The arrow operator -> combines the actions of [jam" |
the dereferencing operator * and the dot . operator

* Specifies a member of a struct or object pointed to by a >
p0|nter end marker

struct ListNode

(*head).count = 12; (
can be written as string item;

int count;
head->count = 12; ListNode *1ink;

° i }s
The arrow operator is more commonly used Uypedef ListNode* ListNodePtr;
than the (*head).varName approach ListNodePtr head;

5/29/18 Matni, CS16, Sp18

* The pre-defined constant NULL is used as an end marker for a
linked list
— A program can step through a list of nodes by following the pointers, but

when it finds a node containing NULL, it knows it has come to the end of
the list

* The value of a pointer that has nothing to point to is NULL
— The value of NULL is O

5/29/18 Matni, CS16, Sp18

e A definition of NULL is found in several libraries,
including <iostream>

e Any pointer can be assigned the value NULL:

double* there = NULL; // a pointer pointing to nothing
// C++ as Zen Buddhism?!

5/29/18 Matni, CS16, Sp18

Accessing Node Data

head->count = 12;
head->item = “bagels”;

cout << head->count;
//prints 12

cout << head->link->count;
//prints 3

cout << head->link->link->item
//prints “tea”

5/29/18

struct Node

{

int data;
Node *1ink

}s

typedef Node* NodePtr;

NodePtr head;

head = new Node;

head->data =
head->1ink =

5/29/18

J

3;
NULL;

Building a Linked List

Matni, CS16, Sp18

Function head_insert

e Let’s create a function that inserts nodes at the head of a list.

void head_insert(NodePtr& head, int the_number);
— The first parameter is a NodePtr parameter that points to the first node in the linked list
— The second parameter is the number to store in the list

* head_insert will create a new node with the_number

— First, we will copy the_number into a new node
— Then, this new node will be inserted in the list as the new head node

5/29/18 Matni, CS16, Sp18

Pseudocode for head_insert

. Create a new dynamic variable pointed to by temp_ptr
Place the data (the_number) in the new node called *temp_ptr
Make temp_ptr's link variable point to the head node

Make the head pointer point to temp_ptr

5/29/18 Matni, CS16, Sp18

Adding a Node to a Linked List

Pseudocode for e
head _insert -

12

L——

Create a new dynamic variable ‘ T

pointed to by temp_ptr

2

Place the data (the_number) in the

NULL

new node called *temp_ptr

Make temp_ptr's link variable point
to the head node

Make the head pointer point to
temp_ptr

5/29/18 Matni, CS16, §

5/29/18

Pseudocode for IS
head insert e N
Create a new dynamic variable head
: e
pointed to by temp_ptr
Place the data (the_number) in the

new node called *temp_ptr

Make temp_ptr's link variable point

_temp_ptr
to the head node —
Make the head pointer point to | heqdo,.m‘gm
L?=======?”:,; =

temp_ptr

Matni, CS16, §

Adding a Node to a Linked List

v node

12

15

NULL

3. head = temp_ptr;

12

2. temp_ptr->1ink = head;

temp_ptr ‘ 12
I -
head '
‘ 1 15
L_________w‘ -—
—
Y
3
NULL

4. After function call

NULL

#include <iostream>
using namespace std;

struct Node

{

int data;
Node *1ink;
}s

typedef Node* NodePtr;

void head_insert(NodePtr& head, int the_number);

int main()

{
NodePtr head;

head = new Node;

head->data 3;
head->1ink = NULL;

head insert(head, 5);

return 0; }

Translating head_insert
to C++

{

void head_insert(NodePtr& head, int the_number)

NodePtr temp ptr;
temp_ptr = new Node;

temp_ptr->data = the_number;

temp ptr->link = head;
head = temp ptr;

Reversing a LL

What if you wanted to go from Nodel -> Node2 -> Node3
to Node3 -> Node2 -> Nodel ??

It helps to think of other pointers showing you current, previous and
next nodes

Repeat the following thru the LL
— Next becomes what current links to
— Current then links to previous

— Previous is now current

— Current is now next

Finally make h = previous and you’ve reversed it!

5/29/18 Matni, CS16, Sp18

VEINIANARELE

* Nodes that are lost by assigning their pointers a new address
are not accessible any longer

 The program has no way to refer to the nodes and cannot
delete them to return their memory to the heap (freestore)

* Programs that lose nodes have a memory leak
— Significant memory leaks can cause system crashes

5/29/18 Matni, CS16, Sp18

Searching a Linked List

* To design a function that will locate a particular
node in a linked list:

— We want the function to return a pointer to the node so we can use
the data if we find it, else it should return NULL

— The linked list is one argument to the function
— The data we wish to find is the other argument
— This declaration should work:

NodePtr search(NodePtr head, int target);

5/29/18 Matni, CS16, Sp18

Function search (refined)

 We will use a local pointer variable, named here, to move
through the list checking for the target

— The only way to move around a linked list is to follow pointers

 We will start with here pointing to the first node and move
the pointer from node to node following the pointer out of
each node

5/29/18 Matni, CS16, Sp18

Pseudocode for search

* Make pointer variable here point to the head node

* While ((here does not point to a node containing target)
AND (here does not point to the last node))

{

make here point to the next node
}

 If (here points to a node containing the target)
return here;
else
return NULL;

5/29/18 Matni, CS16, Sp18

struct Node

Moving Through the List Yot data

Node *1link;
}s "
* The pseudocode for search requires that pointer here

step through the list

* How does here follow the pointers from node to node?
— When here points to a node, here->1ink is the address of the next node

* To make here point to the next node, make the assignment:

here = here->link;

5/29/18 Matni, CS16, Sp18

Searching a Linked List

1.
head
T —

: -—————f———w-

here !

- SNPEEIR. _— l
1 ? — S

|

L

_ [

5/29/18

target s 6

head

.L_____f___v'

here

2.

——
-

2 Not fere

Matni, CS16, Sp18

1 Not here

- — J

YOUR TO-DOs

] Start Lab 9 on Wednesday
1 Do HW15 by Thursday

 Visit Prof’s and TAs‘ office hours if you need help!

5/29/18 Matni, CS16, Sp18

</LECTURE>

