
Exercises	with	Linked	Lists	

CS	16:	Solving	Problems	with	Computers	I	
Lecture	#15	

	
Ziad	Matni	

Dept.	of	Computer	Science,	UCSB	



The	head	of	a	List	

•  The	box	labeled	head,	in	Display	13.1,		
is	not	a	node,	but	simply	a	pointer	variable	that		
points	to	a	node	

•  Pointer	variable	head	is	declared	as:	
	
																ListNodePtr	head;		

5/29/18	 Matni,	CS16,	Sp18	 2	

struct	ListNode	
{	

	string	item;	
				int	count;	
				ListNode	*link;	
};	
typedef	ListNode*	ListNodePtr;	
ListNodePtr	head;	



Accessing	Items	in	a	Node	
•  Looking	at	this	example:	one	way	to	change	the		

number	in	the	first	node	from	10	to	12:	
																					(*head).count	=	12;	

•  head	is	a	pointer	variable	to	a	node,		
so	*head	is	the	node	that	head	points	to	

•  The	parentheses	are	necessary	because	the	dot	
operator	(.)	has	higher	precedence	than	the		
dereference	operator	(*)	

5/29/18	 Matni,	CS16,	Sp18	 3	

struct	ListNode	
{	

	string	item;	
				int	count;	
				ListNode	*link;	
};	
typedef	ListNode*	ListNodePtr;	
ListNodePtr	head;	

item	
count	
*link	



The	Arrow	Operator	

•  The	arrow	operator	->	combines	the	actions	of		
the	dereferencing		operator	*	and	the	dot	.	operator	
	

•  Specifies	a	member	of	a	struct	or	object	pointed	to	by	a	
pointer:	

	 	 	(*head).count	=	12;	
				can	be	written	as	
																				head->count	=	12;	

•  The	arrow	operator	is	more	commonly	used	
than	the	(*head).varName	approach	

5/29/18	 Matni,	CS16,	Sp18	 4	

struct	ListNode	
{	

	string	item;	
				int	count;	
				ListNode	*link;	
};	
typedef	ListNode*	ListNodePtr;	
ListNodePtr	head;	

item	
count	
*link	



NULL	

•  The	pre-defined	constant	NULL	is	used	as	an	end	marker	for	a	
linked	list	
– A	program	can	step	through	a	list	of	nodes	by	following	the	pointers,	but	
when	it	finds	a	node	containing	NULL,	it	knows	it	has	come	to	the	end	of	
the	list	

•  The	value	of	a	pointer	that	has	nothing	to	point	to	is	NULL	
–  The	value	of	NULL	is	0	

5/29/18	 Matni,	CS16,	Sp18	 5	



NULL	

•  A	definition	of	NULL	is	found	in	several	libraries,		
	 	 	 	 	 	 	 	 	 	 	 	 	including	<iostream>	

•  Any	pointer	can	be	assigned	the	value	NULL:	
		

double*	there	=	NULL;	//	a	pointer	pointing	to	nothing	
	 	 	 	 	 	 	 	 	//	C++	as	Zen	Buddhism?!	

5/29/18	 Matni,	CS16,	Sp18	 6	



Accessing	Node	Data	

5/29/18	 7	

head->count	=	12;	
head->item	=	“bagels”;	
	
cout	<<	head->count;	
//prints	12	
	
cout	<<	head->link->count;	
//prints	3	
	
cout	<<	head->link->link->item	
//prints	“tea”	



Building	a	Linked	List	struct	Node		
{	
	int	data;	
	Node	*link;	

};	
	
typedef	Node*	NodePtr;	
NodePtr	head;	
	
head	=	new	Node;	
	
head->data	=	3;	
head->link	=	NULL;	
5/29/18	 Matni,	CS16,	Sp18	 8	

head	

3	

NULL	



Function	head_insert	

•  Let’s	create	a	function	that	inserts	nodes	at	the	head	of	a	list.	
	
void	head_insert(NodePtr&	head,	int	the_number);	

–  The	first	parameter	is	a	NodePtr	parameter	that	points	to	the	first	node	in	the	linked	list	
–  The	second	parameter	is	the	number	to	store	in	the	list	

	

•  head_insert	will	create	a	new	node	with	the_number	
–  First,	we	will	copy	the_number	into	a	new	node	
–  Then,	this	new	node	will	be	inserted	in	the	list	as	the	new	head	node	

5/29/18	 Matni,	CS16,	Sp18	 9	



Pseudocode	for	head_insert	

1.  Create	a	new	dynamic	variable	pointed	to	by	temp_ptr	

2.  Place	the	data	(the_number)	in	the	new	node	called	*temp_ptr	

3.  Make	temp_ptr's	link	variable	point	to	the	head	node		

4.  Make	the	head	pointer	point	to	temp_ptr	

5/29/18	 Matni,	CS16,	Sp18	 10	



Pseudocode	for	
head_insert	

5/29/18	 Matni,	CS16,	Sp18	 11	

1.  Create	a	new	dynamic	variable	
pointed	to	by	temp_ptr	

2.  Place	the	data	(the_number)	in	the	
new	node	called	*temp_ptr	

3.  Make	temp_ptr's	link	variable	point	
to	the	head	node		

4.  Make	the	head	pointer	point	to	

temp_ptr	

	



Pseudocode	for	
head_insert	

5/29/18	 Matni,	CS16,	Sp18	 12	

1.  Create	a	new	dynamic	variable	
pointed	to	by	temp_ptr	

2.  Place	the	data	(the_number)	in	the	
new	node	called	*temp_ptr	

3.  Make	temp_ptr's	link	variable	point	
to	the	head	node		

4.  Make	the	head	pointer	point	to	

temp_ptr	



5/29/18	 Matni,	CS16,	Sp18	 13	

#include	<iostream>	
using	namespace	std;	
	
struct	Node	
{	

	int	data;	
	Node	*link;	

};	
	
typedef	Node*	NodePtr;	
void	head_insert(NodePtr&	head,	int	the_number);	
	
int	main()	
{	

	NodePtr	head;	
	head	=	new	Node;	

	
	head->data	=	3;	
	head->link	=	NULL;	
	 		
	head_insert(head,	5);	

	
	return	0;	}	

void	head_insert(NodePtr&	head,	int	the_number)	
{	

	NodePtr	temp_ptr;	
	temp_ptr	=	new	Node;	

	
	temp_ptr->data	=	the_number;	

	
	temp_ptr->link	=	head;	
	head	=	temp_ptr;	

	
}	

Translating	head_insert		
to	C++	



Reversing	a	LL	
•  What	if	you	wanted	to	go	from	Node1	->	Node2	->	Node3	

	 	 	 	 	 	 	 	 	 	 	to	Node3	->	Node2	->	Node1	??	

•  It	helps	to	think	of	other	pointers	showing	you	current,	previous	and	
next	nodes	

•  Repeat	the	following	thru	the	LL	
– Next	becomes	what	current	links	to	
–  Current	then	links	to	previous	
–  Previous	is	now	current	
–  Current	is	now	next	

•  Finally	make	h		=	previous	and	you’ve	reversed	it!	

5/29/18	 Matni,	CS16,	Sp18	 14	



Memory	Leaks	

•  Nodes	that	are	lost	by	assigning	their	pointers	a	new	address	
are	not	accessible	any	longer	

•  The	program	has	no	way	to	refer	to	the	nodes	and	cannot	
delete	them	to	return	their	memory	to	the	heap	(freestore)	

•  Programs	that	lose	nodes	have	a	memory	leak	
– Significant	memory	leaks	can	cause	system	crashes	

5/29/18	 Matni,	CS16,	Sp18	 15	



Searching	a	Linked	List	

•  To	design	a	function	that	will	locate	a	particular	
node	in	a	linked	list:	
– We	want	the	function	to	return	a	pointer	to	the	node	so	we	can	use	
the	data	if	we	find	it,	else	it	should	return	NULL	

– The	linked	list	is	one	argument	to	the	function	
– The	data	we	wish	to	find	is	the	other	argument	
– This	declaration	should	work:	
	
			NodePtr	search(NodePtr	head,	int	target);	

5/29/18	 Matni,	CS16,	Sp18	 16	



Function	search	(refined)	

•  We	will	use	a	local	pointer	variable,	named	here,	to	move	
through	the	list	checking	for	the	target	
– The	only	way	to	move	around	a	linked	list	is	to	follow	pointers	

•  We	will	start	with	here	pointing	to	the	first	node	and	move	
the	pointer	from	node	to	node	following	the	pointer	out	of	
each	node	

5/29/18	 Matni,	CS16,	Sp18	 17	



Pseudocode	for	search	

•  Make	pointer	variable	here	point	to	the	head	node	
•  While	(	(here	does	not	point	to	a	node	containing	target)	

											 	 	 	 	 	AND	(here	does	not	point	to	the	last	node)	)	
	{	
					make	here	point	to	the	next	node	
	}	

•  If	(here	points	to	a	node	containing	the	target)	
						return	here;	
		else	
						return	NULL;	

5/29/18	 Matni,	CS16,	Sp18	 18	



Moving	Through	the	List	
•  The	pseudocode	for	search	requires	that	pointer	here		
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	step	through	the	list	

•  How	does	here	follow	the	pointers	from	node	to	node?	
– When	here	points	to	a	node,	here->link	is	the	address	of	the	next	node	

•  To	make	here	point	to	the	next	node,	make	the	assignment:	
																

here	=	here->link;	
	

5/29/18	 Matni,	CS16,	Sp18	 19	

struct	Node	
{	

	int	data;	
	Node	*link;	

};	



5/29/18	 Matni,	CS16,	Sp18	 20	



YOUR	TO-DOs	

q Start	Lab	9	on	Wednesday	
q Do	HW15	by	Thursday	

q Visit	Prof’s	and	TAs‘	office	hours	if	you	need	help!	

5/29/18	 Matni,	CS16,	Sp18	 21	



5/29/18	 Matni,	CS16,	Sp18	 22	


