Structures in C++
Introduction to Linked Lists

CS 16: Solving Problems with Computers |
Lecture #14

Ziad Matni
Dept. of Computer Science, UCSB

Lecture Outline

Structures (Ch. 10.1)
Defining structures
Member variables and functions
Structures in functions
Hierarchy in structures
Initializing structures

Linked Lists (Ch. 13.1)

* We will cover everything in this section
— We are not covering Ch. 13.2 section!

5/24/18 Matni, CS16, Sp18

First... What Is a Class?

A class is a data type whose variables are called objects

Some pre-defined data types you have used are: int, char, double
Some pre-defined classes you have used are: ifstream, string, vector

You can also define your own classes as well

5/24/18 Matni, CS16, Sp18

Class Definitions

 To define a “class”, we need to...

— Describe the kinds of values the variable can hold
 Numbers? Characters? Both? Something else?

— Describe the member functions
 What can we do with these values?

* We will start by defining structures as a first step toward
defining classes

5/24/18 Matni, CS16, Sp18

STRUCTURES

Structures

A structure’s use can be viewed as an object

Let’s say it does not contain any member functions (for now...)

It does contain multiple values of possibly different types

We'll call these member variables

5/24/18 Matni, CS16, Sp18

Structures for Data

 These multiple values are logically related to one another and come
together as a single item

— Examples:
A bank Certificate of Deposit (CD) which has the following values:
a balance What kind of values
should these

an interest rate individually be?!

a term (how many months to maturity)

— A student record which has the following values: .
he student’s ID b What kind of values
the student’s ID number should these
the student’s last name individually be?!
the student’s first name
5/24/18 the StUdent’s GPA Matni, CS16, Sp18

The CD Structure Example: Definition

* The Certificate of Deposit structure can be defined as

struct CDAccount

{

double balance; // a dollar amount
double interest rate; // a percentage
int term; // a term amount in months

P

}oso

* Keyword struct begins a structure definition
* CDAccount is the structure tag — this is the structure’s type
* Member names are declared in the braces

5/24/18 Matni, CS16, Sp18

Using the Structure

e Structure definition should be placed outside any function definition
— Including outside of main()

— This makes the structure type available to all code that follows the structure
definition (i.e. global)

* To declare two variables of type CDAccount:
CDAccount my account, your account;

and
contain distinct member variables balance, interest_rate, and term

5/24/18 Matni, CS16, Sp18

Specifying Member Variables

Member variables are specific to the structure variable in which they are
declared

Syntax to specify a member variable (note the *.")
Structure Variable Name . Member Variable Name

Given the declaration:

Use the dot operator to specify a member variable, e.g.
my _account.balance is a double
my account.interest rate isadouble
my account.term is an int

5/24/18 Matni, CS16, Sp18

//Program to demonstrate the CDAccount structure type.
#include <iostream>

using namespace std;

//Structure for a bank certificate of deposit:
struct CDAccount

Note the struct definition

{ is placed before main()
double balance;

double interest_rate;
int term;//months until maturity

s

void get_data(CDAccount& the_account);
//Postcondition: the_account.balance and the_account.interest_rate
//have been given values that the user entered at the keyboard.

{

Note the
calculations done
with the
structure’s

member variables

5/24/18

int main() Note the declaration of

CDAccount

CDAccount account;

get_data(account); We are going to “fill in” the data structure
that’s “account” using a function...

double rate_fraction, interest;

rate_fraction = account.interest rate/100.0;

interest = account.balance*rate_fraction*(account.term/12.0);
account.balance = account.balance + interest;

cout.setf(ios::fixed);

cout.setf(ios: :showpoint);

cout.precision(2);

cout << "When your CD matures in
<< account.term << " months,\n"
<< "it will have a balance of $"
<< account.balance << endl;

return 0;

L1}

Note that the
structure is passed
into the function as

call-by-reference.

{

You can also pass a
structure
call-by-value.

Note the use of the
structure’s member
variables with an
input stream.

5/24/18

//Uses iostream:
void get_data(CDAccount& the_ account)

cout << "Enter account balance: $";

cin >> the_account.balance;

cout << "Enter account interest rate: ";

cin >> the_account.interest_rate;

cout << "Enter the number of months until maturity\n"
<< "(must be 12 or fewer months): ";

cin >> the_account.term;

Dialogue

Enter account balance: $100.00

Enter account interest rate: 10.0

Enter the number of months until maturity
(must be 12 or fewer months): 6

When your CD matures in 6 months,

it will have a balance of $105.00

Duplicate Names

 Member variable names duplicated between structure types are not a problem

struct FertilizerStock struct CropYield

{ {
double quantity; int quantity;

double nitrogen_content; double size;

}s }s
FertilizerStock super_grow; CropYield apples;

* This is because we have to use the dot operator

e super_grow.quantity and apples.quantity are different variables stored in
different locations in computer memory

5/24/18 Matni, CS16, Sp18

Structures as Return Function Types

e Structures can also be the type of a value returned by a function

Example:
CDAccount shrink wrap

(double the _balance, double the rate, int the_term)
{
CDAccount temp;
temp.balance = the _balance;
temp.interest rate = the_rate;
temp.term = the_term; What is this function doing?
return temp;

}

5/24/18 Matni, CS16, Sp18

Example: Using Function shrink_wrap

shrink_wrap builds a complete structure value in the structure
temp, which is returned by the function

We can use shrink_wrap to give a variable of type CDAccount
a value in this way:

CDAccount new_account;
new_account = shrink wrap(1000.00, 5.1, 11);

5/24/18 Matni, CS16, Sp18

Assignment and Structures

* The assignment operator (=) can also be used to give values to structure types
* Using the CDAccount structure again for example:

CDAccount my account, your_account;
my _account.balance = 1000.00;

my _account.interest rate = 5.1;

my account.term = 12;

your_account = my_account;

* Note: This last line assigns all member variables in your_account the
corresponding values in my_account

5/24/18 Matni, CS16, Sp18

Hierarchical Structures

e Structures can contain member variables that are also structures

struct Date struct PersonInfo

{ {

int month; double height;

int weight;

int day; Date birthday;

int year; };
J

s

e struct Personinfo contains a Date structure

5/24/18 Matni, CS16, Sp18

struct PersonInfo

Using Personinfo {

double height;
“ »

An example on “.” operator use int weight;
Date birthday;

* Avariable of type Personinfo is declared: ¥

PersonInfo personl; struct Date

{

int month;
int day;
int year;

* To display the birth year of personl,
first access the birthday member of personl

cout <« per‘sonl. bir‘thday...(wait! not complete yet!) }s

* But we want the year, so we now specify the year member of the birthday
member

cout << personl.birthday.year;

5/24/18 Matni, CS16, Sp18

5/24/18 Matni, CS16, Sp18

Initializing Structures

e A structure can be initialized when declared
Example: struct Date

int month;
int day;
int year; month day year

}s

e Can be initialized in this way~ watch out for the order!:
Date due_date = {4, 20, 2018};
Date birthday = {12, 25, 2000};

5/24/18 Matni, CS16, Sp18

Application of Structures

Linked Lists!

5/24/18 Matni, CS16, Sp18

Pointers and Linked Lists

* Definition of Linked Lists:
Linear collection of data elements, called nodes, each pointing to the
next node by means of a pointer

* List elements can easily be inserted or removed without
reorganization of the entire structure (unlike arrays)

e Dataitemsin a linked list do not have to be stored in one large
memory block (again, unlike arrays)

5/24/18 Matni, CS16, Sp18

Linked Lists

* You can build a list of “nodes” which are made up of variables
and pointers to create a chain.

* Adding and deleting nodes in the link can be done by

“re-routing” pointer links.

12] o->(99] o >37| o

newNode newNode nEWNOde I'IEWNWE

. I! node node.next node.next.next
e 3 3

d

node X
Node

b Ly e e M0 By v
node node.next n 9;4.‘ =
ode.

node node.next

node node.next.next

5/24/18 Matni, CS16, Sp18

* The boxes in the previous drawing represent the nodes of a
linked list
— Nodes contain the data item(s) and a pointer that can point to
another node of the same type

— The pointers point to an entire node, not an individual item that
might be in the node

 The arrows in the drawing represent pointers

5/24/18 Matni, CS16, Sp18

Nodes and Pointers — An lllustrated Example
(shown as Display 13.1 in the textbook)

Nodes and Pointers
head

»—

"tea“
2

end marker

5/24/18

Nodes and Pointers

head - rolls” |

Implementing Nodes — |EEEEEEECEEN

* Nodes are implemented in C++ as structs or classes IJ%
=1

 Example: A structure to store two data items and a
pointer to another node of the same type, along with a
type definition might be: e

2
struct ListNode | end marker

{
string item;
int count; This circular definition
y ListNode *link; < is allowed in C++
J

typedef ListNode* ListNodePtr;

5/24/18 Matni, CS16, Sp18

Nodes and Pointers
head

The head of a List =%

The box labeled head, in Display 13.1,
is not a node, but simply a pointer variable that

points to a node _y_

end marker

Pointer variable head is declared as: struct ListNode
{

string item;

ListNodePtr head; int count;

ListNode *1ink;
¥

typedef ListNode* ListNodePtr;
ListNodePtr head;

5/24/18 Matni, CS16, Sp18

Creating a Linked List

* First create the node(s)

ListNode myNodel, myNode2; Check out demo:
myNodel.item = “Thingamajiggie”;

myNodel.count = 5; // etc..

* Then link the head pointer to the 15t node in the list
head = new ListNode;
*head = myNodel;
// i.e. “what head links to is myNodel”

 Then link all the other nodes to each other
*(myNodel.link) = myNode2; // etc..

5/24/18 Matni, CS16, Sp18

YOUR TO-DOs

 Turn in Lab 8 on Monday
1 Do HW14 by Tuesday

[Visit TAs* office hours if you need help!

O Prof. will not have office hours next Monday (University holiday)

[Enjoy the long weekend! ©

5/24/18 Matni, CS16, Sp18

</LECTURE>

