
Structures	in	C++	
Introduction	to	Linked	Lists	

CS	16:	Solving	Problems	with	Computers	I	
Lecture	#14	

	
Ziad	Matni	

Dept.	of	Computer	Science,	UCSB	

Lecture	Outline	
Structures 	(Ch.	10.1)	
•  Defining	structures	
•  Member	variables	and	functions	
•  Structures	in	functions	
•  Hierarchy	in	structures	
•  Initializing	structures	

Linked	Lists	(Ch.	13.1)	
•  We	will	cover	everything	in	this	section	

– We	are	not	covering	Ch.	13.2	section!	

5/24/18	 Matni,	CS16,	Sp18	 2	

First…	What	Is	a	Class?	

•  A	class	is	a	data	type	whose	variables	are	called	objects	

•  Some	pre-defined	data	types	you	have	used	are:	int,	char,	double	

•  Some	pre-defined	classes	you	have	used	are:	ifstream,	string,	vector	

•  You	can	also	define	your	own	classes	as	well	

5/24/18	 Matni,	CS16,	Sp18	 3	

Class	Definitions	

•  To	define	a	“class”,	we	need	to…	
– Describe	the	kinds	of	values	the	variable	can	hold	
•  Numbers?	Characters?	Both?	Something	else?	

– Describe	the	member	functions	
• What	can	we	do	with	these	values?	

•  We	will	start	by	defining	structures	as	a	first	step	toward	
defining	classes	

5/24/18	 Matni,	CS16,	Sp18	 4	

STRUCTURES	

5/24/18	 Matni,	CS16,	Sp18	 5	

Structures	

•  A	structure’s	use	can	be	viewed	as	an	object	

•  Let’s	say	it	does	not	contain	any	member	functions	(for	now…)	

•  It	does	contain	multiple	values	of	possibly	different	types	

•  We’ll	call	these	member	variables	

5/24/18	 Matni,	CS16,	Sp18	 6	

Structures	for	Data	

•  These	multiple	values	are	logically	related	to	one	another	and	come	
together	as	a	single	item	
–  Examples:					
A	bank	Certificate	of	Deposit	(CD)	which	has	the	following	values:		
			 	 	a	balance	
	 	 			 	an	interest	rate	
	 	 	a	term	(how	many	months	to	maturity)		
	

–  A	student	record	which	has	the	following	values:		
			 	 	the	student’s	ID	number	
	 	 			 	the	student’s	last	name	
	 	 	the	student’s	first	name	
	 	 	the	student’s	GPA	5/24/18	 Matni,	CS16,	Sp18	 7	

What	kind	of	values	
should	these	

individually	be?!	

What	kind	of	values	
should	these	

individually	be?!	

The	CD	Structure	Example:	Definition	
•  The	Certificate	of	Deposit	structure	can	be	defined	as 	 		

		
	struct	CDAccount	

	 	{	
	 	 	double	balance; 	 	 	//	a	dollar	amount	

	 	double	interest_rate; 	//	a	percentage	
	 	 	int	term;	 	 	 	 	 	//	a	term	amount	in	months	

	}	;	

•  Keyword	struct	begins	a	structure	definition	
•  CDAccount	is	the	structure	tag	–	this	is	the	structure’s	type		
•  Member	names	are	identifiers	declared	in	the	braces	

5/24/18	 Matni,	CS16,	Sp18	 8	

Remember this semicolon!

Using	the	Structure	

•  Structure	definition	should	be	placed	outside	any	function	definition	
–  Including	outside	of	main()	
–  This	makes	the	structure	type	available	to	all	code	that	follows	the	structure	
definition	(i.e.	global)	

•  To	declare	two	variables	of	type	CDAccount:	
CDAccount		my_account,	your_account;	

	my_account	and	your_account		
contain	distinct	member	variables	balance,	interest_rate,		and	term	

5/24/18	 Matni,	CS16,	Sp18	 9	

Specifying	Member	Variables	
•  Member	variables	are	specific	to	the	structure	variable	in	which	they	are	
declared	
	

•  Syntax	to	specify	a	member	variable	(note	the	‘.’)	
 Structure_Variable_Name . Member_Variable_Name

•  Given	the	declaration:	
 CDAccount		my_account,	your_account;	
	

•  Use	the	dot	operator	to	specify	a	member	variable,	e.g.	
 my_account.balance		 	 	 	is	a	double	
	 	my_account.interest_rate	 	is	a	double	
	 	my_account.term 	 	 	 	 	is	an	int	

5/24/18	 Matni,	CS16,	Sp18	 10	

5/24/18	 Matni,	CS16,	Sp18	 11	

Note	the	struct	definition	
is	placed	before	main()	

5/24/18	 Matni,	CS16,	Sp18	 12	

Note	the	declaration	of	
CDAccount	

Note	the	
calculations	done	

with	the	
structure’s	

member	variables	

We	are	going	to	“fill	in”	the	data	structure	
that’s	“account”	using	a	function…	

5/24/18	 Matni,	CS16,	Sp18	 13	

Note	the	use	of	the	
structure’s	member	
variables	with	an	
input	stream.	

Note	that	the	
structure	is	passed	
into	the	function	as	
call-by-reference.	

	
You	can	also	pass	a	

structure		
call-by-value.	

Duplicate	Names	

•  Member	variable	names	duplicated	between	structure	types	are	not	a	problem	
	
	
	
	
	
	
•  This	is	because	we	have	to	use	the	dot	operator		
•  super_grow.quantity	and	apples.quantity	are	different	variables	stored	in	

different	locations	in	computer	memory	

5/24/18	 Matni,	CS16,	Sp18	 14	

struct	FertilizerStock	
{	
				double	quantity;	
				double	nitrogen_content;	
};	
	
FertilizerStock		super_grow;	

struct	CropYield	
{	
			int	quantity;	
			double	size;	
};	
	
CropYield		apples;	

Structures	as	Return	Function	Types	

•  Structures	can	also	be	the	type	of	a	value	returned	by	a	function	

Example:
CDAccount	shrink_wrap	
	 	 	 	(double	the_balance,	double	the_rate,	int	the_term)	

{			
				CDAccount	temp;	
				temp.balance	=	the_balance;	
				temp.interest_rate	=	the_rate;	
				temp.term	=	the_term;	
				return	temp;	
}	

5/24/18	 Matni,	CS16,	Sp18	 15	

What	is	this	function	doing?	

Example:	Using	Function	shrink_wrap	

•  shrink_wrap	builds	a	complete	structure	value	in	the	structure	
temp,	which	is	returned	by	the	function	

•  We	can	use	shrink_wrap	to	give	a	variable	of	type	CDAccount	
a	value	in	this	way:	
		
	CDAccount		new_account;	
	new_account	=	shrink_wrap(1000.00,	5.1,	11);	

5/24/18	 Matni,	CS16,	Sp18	 16	

Assignment	and	Structures	
•  The	assignment	operator	(=)	can	also	be	used	to	give	values	to	structure	types	
•  Using	the	CDAccount	structure	again	for	example:	
	

 CDAccount	my_account,	your_account;	
	my_account.balance	=	1000.00;	
	my_account.interest_rate	=	5.1;	
	my_account.term	=	12;	
	your_account	=	my_account;	

•  Note:	This	last	line	assigns	all	member	variables	in	your_account	the	
corresponding	values	in	my_account	

5/24/18	 Matni,	CS16,	Sp18	 17	

Hierarchical	Structures	

•  Structures	can	contain	member	variables	that	are	also	structures	
	
	

	
	
	
	
	
	
•  struct	PersonInfo	contains	a	Date	structure	

5/24/18	 Matni,	CS16,	Sp18	 18	

struct	Date	
{	
			int	month;	
			int	day;	
			int	year;	
};	

struct	PersonInfo	
{	
				double	height;	
				int	weight;	
				Date	birthday;	
};	
	

Using	PersonInfo	
An	example	on	“.”	operator	use	

•  A	variable	of	type	PersonInfo	is	declared:	
	

					 	 	PersonInfo	person1;	

•  To	display	the	birth	year	of	person1,		

first	access	the	birthday	member	of	person1	

 cout	<<		person1.birthday…(wait!	not	complete	yet!)	
	

•  But	we	want	the	year,	so	we	now	specify	the	year	member	of	the	birthday	
member	
	
 		cout	<<	person1.birthday.year;	

5/24/18	 Matni,	CS16,	Sp18	 19	

5/24/18	 Matni,	CS16,	Sp18	 20	

Initializing	Structures	

•  A	structure	can	be	initialized	when	declared	
Example: struct	Date	
	 	 	 	{	

	 	 	 	 	 	int	month;	
	 	 	 	 	 	int	day;	
	 	 	 	 	 	int	year;	
	 	 	 	};	

	

•  Can	be	initialized	in	this	way	–	watch	out	for	the	order!:	
 Date	due_date	=	{4,	20,	2018};	
	 	 	Date 	birthday	=	{12,	25,	2000};	

5/24/18	 Matni,	CS16,	Sp18	 21	

month		day			year	

Application	of	Structures	

5/24/18	 Matni,	CS16,	Sp18	 22	

Linked	Lists!	

Pointers	and	Linked	Lists	

•  Definition	of	Linked	Lists:		
Linear	collection	of	data	elements,	called	nodes,	each	pointing	to	the	
next	node	by	means	of	a	pointer	

•  List	elements	can	easily	be	inserted	or	removed	without	
reorganization	of	the	entire	structure	(unlike	arrays)	

•  Data	items	in	a	linked	list	do	not	have	to	be	stored	in	one	large	
memory	block	(again,	unlike	arrays)		

5/24/18	 Matni,	CS16,	Sp18	 23	

Linked	Lists	

•  You	can	build	a	list	of	“nodes”	which	are	made	up	of	variables	
and	pointers	to	create	a	chain.	

•  Adding	and	deleting	nodes	in	the	link	can	be	done	by		
“re-routing”	pointer	links.	

5/24/18	 Matni,	CS16,	Sp18	 24	

Nodes

•  The	boxes	in	the	previous	drawing	represent	the	nodes	of	a	
linked	list	
– Nodes	contain	the	data	item(s)	and	a	pointer	that	can	point	to	
another	node	of	the	same	type	

– The	pointers	point	to	an	entire	node,	not	an	individual	item	that	
might	be	in	the	node	

•  The	arrows	in	the	drawing	represent	pointers		

5/24/18	 Matni,	CS16,	Sp18	 25	

Nodes	and	Pointers	–	An	Illustrated	Example	
(shown	as	Display	13.1	in	the	textbook)	

5/24/18	 26	

Implementing	Nodes	
•  Nodes	are	implemented	in	C++	as	structs	or	classes	
•  Example:		A	structure	to	store	two	data	items	and	a	
pointer	to	another	node	of	the	same	type,	along	with	a	
type	definition	might	be:

 struct	ListNode	
										{	
										 	string	item;	
													int	count;	
													ListNode	*link;	
										};	
	
							 	typedef	ListNode*	ListNodePtr;	

5/24/18	 Matni,	CS16,	Sp18	 27	

This circular definition
 is allowed in C++

The	head	of	a	List	

•  The	box	labeled	head,	in	Display	13.1,		
is	not	a	node,	but	simply	a	pointer	variable	that		
points	to	a	node	

•  Pointer	variable	head	is	declared	as:	
	
																ListNodePtr	head;		

5/24/18	 Matni,	CS16,	Sp18	 28	

struct	ListNode	
{	

	string	item;	
				int	count;	
				ListNode	*link;	
};	
typedef	ListNode*	ListNodePtr;	
ListNodePtr	head;	

Creating	a	Linked	List	
•  First	create	the	node(s)	

	 	ListNode	myNode1,	myNode2;	
	 	myNode1.item	=	“Thingamajiggie”;	
	 	myNode1.count	=	5; 	//	etc…	

	
•  Then	link	the	head	pointer	to	the	1st	node	in	the	list	

	 	head	=	new	ListNode;	
	 	*head	=	myNode1;	 	 		
	 	//	i.e.	“what	head	links	to	is	myNode1”	

	
•  Then	link	all	the	other	nodes	to	each	other	

	 	*(myNode1.link)	=	myNode2;		//	etc…	

5/24/18	 Matni,	CS16,	Sp18	 29	

Check	out	demo:	
linkedList.cpp	

YOUR	TO-DOs	

q Turn	in	Lab	8	on	Monday	
q Do	HW14	by	Tuesday	

q Visit	TAs‘	office	hours	if	you	need	help!	
q  Prof.	will	not	have	office	hours	next	Monday	(University	holiday)	

q Enjoy	the	long	weekend!	J	

5/24/18	 Matni,	CS16,	Sp18	 30	

5/24/18	 Matni,	CS16,	Sp18	 31	

