Dynamic Arrays and Vectors

CS 16: Solving Problems with Computers |
Lecture #13

Ziad Matni
Dept. of Computer Science, UCSB

Grade Distribution for Midterm #2
CS 16, Spring 18 (Matni)
AVERAGE (MEAN) = 80.3 MEDIAN = 86.5

Lecture Outline

* Dynamic Arrays

* Vectors

5/22/18 Matni, CS16, Sp18

int *ptr, num;

num = 5;
ptr = #
// ptr points to num

cout << *ptr;
// shows 5

int *ptr;
ptr = new int;

*ptr =
// points to a place in the heap

cout << *ptr;
// shows 5

delete ptr;
// remove from the heap

5/22/18

Matni, CS16, Sp18

Type Definitions

* A name can be assigned to a type definition, then used to
declare variables

* The keyword typedef is used to define new type names
* Syntax:

typedef Known Type Definition New_ Type Name;

example: typedef int* MyintPtr;

5/22/18 Matni, CS16, Sp18

Defining Pointer Types

* This helps to avoid mistakes using pointers:
* Example: typedef int* IntPtr;

Defines a new custom data type, IntPtr,
for pointer variables containing pointers to 1nt variables

IntPtr p;
is now equivalent to saying: int *p;

5/22/18 Matni, CS16, Sp18

Dynamic Arrays

Read Ch. 9 (Pointers) in textbook

5/22/18 Matni, CS16, Sp18

Dynamic Arrays

A dynamic array is an array whose size is
determined when the program is running, not when
you write the program

5/22/18 Matni, CS16, Sp18

Pointer Variables and Array Variables

e Array variables are actually pointer variables
that point to the first indexed variable!

— Remember when calling an array in a function?
e funcA(a) ... not ... funcA(a[])

: Since a is a pointer variable that points to a[0],
* Take, for instance: then issuing: p = a;

int af[l0]; causes p to point to the same mem. location as a
typedef int* IntPtr;
IntPtr p;

NOTE: Variables a and p are the same kind of variable!

5/22/18 Matni, CS16, Sp18

Pointer Variables As Array Variables

 Continuing with the previous example: int a[le0];
Pointer variable p can be used typedef int* IntPtr;
as if it were an array variable!! IntPtr p = a;

* So, p[0], p[1], ...p[9] are all legal ways to use p

* |s there a difference between an array and a pointer?
Variable a can be used as a pointer variable BUT the pointer value
in @ cannot be changed
— So, the following is not legal:

IntPtr p2; // let’s say p2 is assigned a value
a = p2 // attempt to change a is NOT OK!

5/22/18 Matni, CS16, Sp18

Arrays and Pointer Variables

//Program to demonstrate that an array variable is a kind of pointer variable.
#include <iostream>
using namespace std;

typedef int* IntPtr;

int main()

{

IntPtr p;
int al[10];
int index; p

for (index = 0; index < 10; index++)
a[index] = index;

Arrays and Pointer Variables
//Program to demonstrate that an array variable is a kind of pointer variable.
#include <iostream>
using namespace std;

typedef int* IntPtr;

int main()

{
IntPtr p;
int al[10];
int index; I’
for (index = 0; index < 10; index++)
a[index] = index;
P = a;
for (index = 0; index < 10; index++)
cout << plindex] << " "; p
cout << endl;
for (index = 0; index < 10; index++) , _
plindex] = plindex] + 1; NMP”mrdmﬁgm!oth
array p are also changes to
the array a.
for (index = 0; index < 10; index++)
cout << a[index] << " ";
cout << endl;
return 0;
}
Output
01234567829
12345678910

Creating Dynamic Arrays

 Normal arrays require that the programmer determine the size of the array
when the program is written
— What if the programmer estimates too large?
* Memory is wasted

— What if the programmer estimates too small?
* The program may not work in some situations

* Dynamic arrays can be created with just the right size
while the program is running

5/22/18 Matni, CS16, Sp18

Creating Dynamic Arrays

* Dynamic arrays are created using the new operator

* Example:

To create an array of some arbitrary number of elements of type double:

double *d = NULL;
// NULL is a “zero” equivalent to a pointer,
// 1.e a pointer pointing nowhere!

int size;
cout << "Enter size of array: ";
cin >> size;

// Create a dynamic double array of arbitrary size
= new double[size];

d can now be used as if it were an ordinary array!

5/22/18 Matni, CS16, Sp18

DEMO:
dynamicArrays.cpp

DEMO:

Dynamic Arrays (cont.) [dmamicarayscpn

* Pointer variable d is a pointer to d[0]

 When finished with the array, it should be deleted to return memory to the
heap (freestore)
— Example showing syntax: delete [] d;

— The brackets tell C++ that a dynamic array is being deleted so it must check the size to
know how many indexed variables to remove

— Do not forget the brackets!

e Display 9.6 in the book has an example of use

5/22/18 Matni, CS16, Sp18

Pointer Arithmetic

* |f | have a pointer p pointing to an array a[], then:

for(int i = @; i < size; i++) | [for(int 1 = 0; 1 < size; i++)
cout << p[i]; cout << *(p + 1i);

e Both of these will work — Why?

* Adding integers to a pointer address will advance the required
memory offset in the array memory scheme

— Automatically done by the compiler

5/22/18 Matni, CS16, Sp18

Vectors

 An implementation in C++ of Dynamic Arrays

A little easier to use than dynamic arrays using pointers
— Grows an array of base-types automatically for you
— You don’t have to declare size right away

e Has its own library, which you have to include:
#include <vector>

— Has some convenient member functions built-in

5/22/18 Matni, CS16, Sp18

Vectors

* Vectors, like arrays, have a base type (i.e. int, double, string, etc...)

* To declare an empty vector with base type int:
vector<int> v;

— <int> identifies vector as a template class

— You can use any base type in a template class:
vector<double> v;

vector<string> v;

...etc...

5/22/18 Matni, CS16, Sp18

Accessing vector Elements

* Vectors elements are indexed starting with O
— []'s are used to read or change the value of an item:

XY
cout << v[i];

 But[]'s cannot be used to initialize a vector element

5/22/18 Matni, CS16, Sp18

Initializing vector Elements

* Elements are added to a vector using the vector member
function .push_back()

* push_back adds an element in the next available position

* Example:

vector<double> sample;
sample.push_back(0.0);
sample.push_back(1.1);
sample.push_back(2.2);

5/22/18 Matni, CS16, Sp18

The size of a vector

 The member function size() returns the number of elements in a vector
(don’t you wish you had that with arrays!?!)

Example: To print each element of a vector:

Prints out:
vector<double> sample; 0.0
sample.push back(0.0); !
sample.push back(1.1); 1.1
sample.push _back(2.2); 2.2
for (int i= @; i < sample.size();
cout << sample[i] << endl;

5/22/18 Matni, CS16, Sp18

Alternate vector Initialization

A vector constructor exists that takes an integer argument and initializes that number of
elements

— A constructor is a part of a class that is usually used for initialization purposes

Example:

vector<int> v(10);

initializes the first 10 elements to O
v.size()

would then return 10

[]'s can now be used to assign elements O through 9

push_back is used to assign elements greater than 9

5/22/18 Matni, CS16, Sp18

The vector Library

* To use the vector class
— You have to include the vector library

#include <vector>

— Vector names are placed in the standard namespace so the usual
using directive is needed:

using namespace std;

5/22/18 Matni, CS16, Sp18

#include <iostream> Sample Dialogue

#include <vector> Enter a list of positive numbers.
using namespace std; Place a negative number at the end.
246 8 -1
. . 2 added. v.size() =1
int mainC) 4 added. v.size() = 2
{ 6 added. v.size() = 3
8 added. v.size() = 4

vector<int> v;
" . P " You entered:
cout << "Enter a list of positive numbers.\n > 468
<< "Place a negative number at the end.\n";

int next;
cin >> next;
while (next = 0)

{
v.push_back(next); See textbook, pg. 493
cout << next << " added. ";
cout << "v,size() = " << v.size() << endl;
cin =>> next;
}
cout << "You entered:\n";
for (unsigned int 1 = 0; 1 < v.size(); i++)

cout << v[i1] =< " ";
cout << endl;

return 0:;

Defining vector Elements
Beyond Vector Size

Attempting to use [] to set a value beyond the size of a vector
may not generate an error, but it is not correct to do!

Example: assume integer vector v has 3 elements in it
— Performing v[5] = 4, for example, isn’t the “correct” thing to do

— INSTEAD you should use push_back() enough times to get to element 5 first before
making changes

Even though you may not get an error from the compiler, you have messed

around with memory allocations and the program will probably misbehave in
other ways

5/22/18 Matni, CS16, Sp18

vector Efficiency

A vector's capacity is the number of “spaces” in memory that are
put aside for vector elements

size() is the number of elements initialized
capacity() is the number of elements that are put aside (automatically reserved)

When a vector runs out of space, the capacity is automatically increased!
A common scheme by the compiler is to double the size of a vector

5/22/18 Matni, CS16, Sp18

Controlling vector Capacity

 When efficiency is an issue and you want to control memory use
(i.e. and not rely on the compiler)...

* Use member function reserve() to increase the capacity of a vector

Example:

v.reserve(32); // at least 32 elements
v.reserve(v.size() + 10); // at least 10 more

* resize() can be used to shrink a vector

Example:
v.resize(24); //elements beyond 24 are lost

5/22/18 Matni, CS16, Sp18

YOUR TO-DOs

] Start Lab 8 on Wednesday
1 Do HW13 by Thursday

 Visit Prof’s and TAs‘ office hours if you need help!

5/22/18 Matni, CS16, Sp18

</LECTURE>

