
Dynamic	Arrays	and	Vectors	

CS	16:	Solving	Problems	with	Computers	I	
Lecture	#13	

	
Ziad	Matni	

Dept.	of	Computer	Science,	UCSB	

5/22/18	 Matni,	CS16,	Sp18	 2	

Lecture	Outline	

•  Dynamic	Arrays	

•  Vectors	

5/22/18	 Matni,	CS16,	Sp18	 3	

2	Main	Ways	to	Define	Pointers	

int	*ptr,	num;	
…	
num	=	5;	
ptr	=	#	
//	ptr	points	to	num	
…	
cout	<<	*ptr;	
//	shows	5	

5/22/18	 Matni,	CS16,	Sp18	 4	

int	*ptr;	
ptr	=	new	int;	
…	
*ptr	=	5;	
//	points	to	a	place	in	the	heap	
…	
cout	<<	*ptr;	
//	shows	5	
	
delete	ptr;	
//	remove	from	the	heap	
	

Type	Definitions	

•  A	name	can	be	assigned	to	a	type	definition,	then	used	to	
declare	variables	

•  The	keyword	typedef	is	used	to	define	new	type	names	
•  Syntax:			

				 	 	 	 	typedef				Known_Type_Definition			New_Type_Name;	
	

example: 	 	typedef	int*	MyintPtr;	
	
5/22/18	 Matni,	CS16,	Sp18	 5	

Defining	Pointer	Types	

•  This	helps	to	avoid	mistakes	using	pointers:	
•  Example:						typedef	int*	IntPtr;	
	

Defines	a	new	custom	data	type,	IntPtr,		
for	pointer	variables	containing	pointers	to	int	variables	

	

IntPtr	p;	
is	now	equivalent	to	saying:			int	*p;		

	
5/22/18	 Matni,	CS16,	Sp18	 6	

Dynamic	Arrays	
	

Read	Ch.	9	(Pointers)	in	textbook	

5/22/18	 Matni,	CS16,	Sp18	 7	

Dynamic	Arrays	

A	dynamic	array	is	an	array	whose	size	is		
determined	when	the	program	is	running,	not	when	

you	write	the	program	
	

5/22/18	 Matni,	CS16,	Sp18	 8	

Pointer	Variables	and	Array	Variables	

•  Array	variables	are	actually	pointer	variables		
	 	 	 	 	 	 	 	 	that	point	to	the	first	indexed	variable!	
– Remember	when	calling	an	array	in	a	function?	
•  funcA(a)	…	not	…	funcA(a[])	

•  Take,	for	instance:	 		
	 	int		a[10];	
	 	typedef	int*	IntPtr;	
	 	IntPtr	p;	

NOTE:	Variables	a	and	p	are	the	same	kind	of	variable!	

5/22/18	 Matni,	CS16,	Sp18	 9	

Since	a	is	a	pointer	variable	that	points	to	a[0],	
																				then	issuing: 		p	=	a;	
causes	p	to	point	to	the	same	mem.	location	as	a	

Pointer	Variables	As	Array	Variables	

•  Continuing	with	the	previous	example:	
Pointer	variable	p	can	be	used		
as	if	it	were	an	array	variable!!	

•  So,	p[0],	p[1],	…p[9]		are	all	legal	ways	to	use	p	

•  Is	there	a	difference	between	an	array	and	a	pointer?	
Variable	a	can	be	used	as	a	pointer	variable	BUT	the	pointer	value		
in	a	cannot	be	changed	
–  So,	the	following	is	not	legal:						

 IntPtr	p2;	 	//	let’s	say	p2	is	assigned	a	value	
								a	=	p2			 	 	//	attempt	to	change	a	is	NOT	OK!	

5/22/18	 Matni,	CS16,	Sp18	 10	

0	 1	 2	 9	…	a	àà	
0	 1	 2	 9	p	

1	 2	 3	 10	…	a	àà	
0	 1	 2	 9	

11	

p	

0	 1	 2	 9	…	a	àà	
0	 1	 2	 9	p	

1	 2	 3	 10	…	a	àà	
0	 1	 2	 9	

12	

p	

Creating	Dynamic	Arrays	

•  Normal	arrays	require	that	the	programmer	determine	the	size	of	the	array	
when	the	program	is	written	
– What	if	the	programmer	estimates	too	large?	

•  Memory	is	wasted	

– What	if	the	programmer	estimates	too	small?	
•  The	program	may	not	work	in	some	situations	

•  Dynamic	arrays	can	be	created	with	just	the	right	size		
	 	 	 	 	 	 	 	 	 	 	 	 	while	the	program	is	running	

5/22/18	 Matni,	CS16,	Sp18	 13	

Creating	Dynamic	Arrays	
•  Dynamic	arrays	are	created	using	the	new	operator	

•  Example:			
To	create	an	array	of	some	arbitrary	number	of	elements	of	type	double:	
	

	 	double	*d	=	NULL;	
	//	NULL	is	a	“zero”	equivalent	to	a	pointer,		
	//	i.e	a	pointer	pointing	nowhere!	

					
	int	size;	

				cout	<<	"Enter	size	of	array:	";	
				cin	>>	size;	
	
			//	Create	a	dynamic	double	array	of	arbitrary	size	
			d	=	new	double[size];	
	

	d	can	now	be	used	as	if	it	were	an	ordinary	array!		

5/22/18	 Matni,	CS16,	Sp18	 14	

DEMO:	
dynamicArrays.cpp	

Dynamic	Arrays	(cont.)	

•  Pointer	variable	d	is	a	pointer	to	d[0]	
•  When	finished	with	the	array,	it	should	be	deleted	to	return	memory	to	the	

heap	(freestore)	
–  Example	showing	syntax:											delete	[]	d;	

–  The	brackets	tell	C++	that	a	dynamic	array	is	being	deleted	so	it	must	check	the	size	to	
know	how	many	indexed	variables	to	remove	

–  Do	not	forget	the	brackets!	

•  Display	9.6	in	the	book	has	an	example	of	use	

5/22/18	 Matni,	CS16,	Sp18	 15	

DEMO:	
dynamicArrays.cpp	

Pointer	Arithmetic	

•  If	I	have	a	pointer	p	pointing	to	an	array	a[],	then:	

•  Both	of	these	will	work	–	Why?	

•  Adding	integers	to	a	pointer	address	will	advance	the	required	
memory	offset	in	the	array	memory	scheme	
– Automatically	done	by	the	compiler	

5/22/18	 Matni,	CS16,	Sp18	 16	

for(int	i	=	0;	i	<	size;	i++)	
	cout	<<	p[i];	

for(int	i	=	0;	i	<	size;	i++)	
	cout	<<	*(p	+	i);	

Vectors	

•  An	implementation	in	C++	of	Dynamic	Arrays	

•  A	little	easier	to	use	than	dynamic	arrays	using	pointers	
– Grows	an	array	of	base-types	automatically	for	you	
– You	don’t	have	to	declare	size	right	away	

•  Has	its	own	library,	which	you	have	to	include:	
												#include	<vector>	
– Has	some	convenient	member	functions	built-in	

5/22/18	 Matni,	CS16,	Sp18	 17	

Vectors	

•  Vectors,	like	arrays,	have	a	base	type	(i.e.	int,	double,	string,	etc…)	

•  To	declare	an	empty	vector	with	base	type	int:	
							 	 	vector<int>	v;	
–  <int>	identifies	vector	as	a	template	class		
–  You	can	use	any	base	type	in	a	template	class:	

	 	 	 	vector<double>	v;	
	 	 	vector<string>	v;	
	 	 	 	…etc…	

5/22/18	 Matni,	CS16,	Sp18	 18	

Accessing	vector	Elements	

•  Vectors	elements	are	indexed	starting	with	0	
–  []'s	are	used	to	read	or	change	the	value	of	an	item:	

			
																 	v[i]	=	42;	
	 	 	 	cout	<<	v[i];	

•  But	[]'s	cannot	be	used	to	initialize	a	vector	element	

5/22/18	 Matni,	CS16,	Sp18	 19	

Initializing	vector	Elements	

•  Elements	are	added	to	a	vector	using	the	vector	member	
function	.push_back()	

•  push_back	adds	an	element	in	the	next	available	position	

•  Example:				
	 	 		 	 	vector<double>	sample;	

		 								sample.push_back(0.0);	
		 								sample.push_back(1.1);	
		 								sample.push_back(2.2);	

5/22/18	 Matni,	CS16,	Sp18	 20	

The	size	of	a	vector	

•  The	member	function	size()	returns	the	number	of	elements	in	a	vector	
(don’t	you	wish	you	had	that	with	arrays!?!)	

	
Example:		To	print	each	element	of	a	vector:	

							 	 	vector<double>	sample;	
	 	 	 	sample.push_back(0.0);	
	 	 		 	sample.push_back(1.1);	
	 	 		 	sample.push_back(2.2);	
	 	 	for	(int	i=	0;	i	<	sample.size();	i++)	

														cout	<<	sample[i]	<<	endl;	

5/22/18	 Matni,	CS16,	Sp18	 21	

Prints	out:	
0.0	
1.1	
2.2	

Alternate	vector	Initialization	
•  A	vector	constructor	exists	that	takes	an	integer	argument	and	initializes	that	number	of	

elements	
–  A	constructor	is	a	part	of	a	class	that	is	usually	used	for	initialization	purposes	

•  Example:				
	 	 	vector<int>	v(10);	
	 	 	 	 	initializes	the	first	10	elements	to	0	
	 							v.size()		
	 	 	 	 	would	then	return	10	

•  []'s	can	now	be	used	to	assign	elements	0		through	9	
•  push_back	is	used	to	assign	elements	greater	than	9	

5/22/18	 Matni,	CS16,	Sp18	 22	

The	vector	Library	

•  To	use	the	vector	class	
– You	have	to	include	the	vector	library	

	
												#include	<vector>	
	

– Vector	names	are	placed	in	the	standard	namespace	so	the	usual	
using	directive	is	needed:	
	
													using	namespace	std;	

5/22/18	 Matni,	CS16,	Sp18	 23	

24	

See	textbook,	pg.	493	

Defining	vector	Elements		
Beyond	Vector	Size	

•  Attempting	to	use	[]	to	set	a	value	beyond	the	size	of	a	vector		
may	not	generate	an	error,	but	it	is	not	correct	to	do!	

•  Example:	assume	integer	vector	v	has	3	elements	in	it	
–  Performing	v[5]	=	4,	for	example,	isn’t	the	“correct”	thing	to	do	
–  INSTEAD	you	should	use	push_back()	enough	times	to	get	to	element	5	first	before	

making	changes	

•  Even	though	you	may	not	get	an	error	from	the	compiler,	you	have	messed	
around	with	memory	allocations	and	the	program	will	probably	misbehave	in	
other	ways	

5/22/18	 Matni,	CS16,	Sp18	 25	

vector	Efficiency	

•  A	vector's	capacity	is	the	number	of	“spaces”	in	memory	that	are		
put	aside	for	vector	elements	

•  size()	is	the	number	of	elements	initialized	
•  capacity()	is	the	number	of	elements	that	are	put	aside	(automatically	reserved)	

•  When	a	vector	runs	out	of	space,	the	capacity	is	automatically	increased!	
•  A	common	scheme	by	the	compiler	is	to	double	the	size	of	a	vector	

5/22/18	 Matni,	CS16,	Sp18	 26	

Controlling	vector	Capacity	

•  When	efficiency	is	an	issue	and	you	want	to	control	memory	use		
(i.e.	and	not	rely	on	the	compiler)…	

•  Use	member	function	reserve()	to	increase	the	capacity	of	a	vector	
Example:				

v.reserve(32);	 	 	 					//	at	least	32	elements	
v.reserve(v.size()	+	10);		//	at	least	10	more	
	

•  resize()	can	be	used	to	shrink	a	vector	
Example:						

v.resize(24);			 	 	 	 	//elements	beyond	24	are	lost	

5/22/18	 Matni,	CS16,	Sp18	 27	

YOUR	TO-DOs	

q Start	Lab	8	on	Wednesday	
q Do	HW13	by	Thursday	

q Visit	Prof’s	and	TAs‘	office	hours	if	you	need	help!	

5/22/18	 Matni,	CS16,	Sp18	 28	

5/22/18	 Matni,	CS16,	Sp18	 29	

