Pointers

CS 16: Solving Problems with Computers |
Lecture #12

Ziad Matni
Dept. of Computer Science, UCSB

MIDTERM IS COMING!

Thursday, 5/17 in this classroom

Starts at 2:00 PM **SHARP**
— Please start arriving 5-10 minutes before class

| may ask you to change seats

Please bring your UCSB IDs with you E»

"," /4
Closed book: no calculators, no phones, no computers

Only allowed ONE 8.5”x11” sheet of notes — one sided only
— You have to turn it in with your exam

You will write your answers on the exam sheet itself.

5/15/18 Matni, CS16, Sp18

What’s on the Midterm#2?
EVERYTHING From Lectures 7 — 12, including...

Makefiles
Debug Techniques
Numerical Conversions

Strings: C++ vs C-strings

Strings and Characters: Member Functions & Manipulators

File 1/0

Arrays

Pointers (whatever we finish today)

5/15/18 Matni, CS16, Sp18

Lecture Outline

 Pointers

5/15/18 Matni, CS16, Sp18

Pointers

* A pointer is the memory address of a variable

 When a variable is used as a call-by-reference argument,
it’s the actual address in memory that is passed

5/15/18 Matni, CS16, Sp18

Address | Data

Memory Addresses &8l oo | 0

The address of a variable can be obtained by putting num
& is called the address-of operator

the ampersand character (&) before the variable name.

|
num_add

So, while num =42, &num =0x1F =31

You can assign a variable to an address-of another variable too!
Example: num_add = &num

5/15/18 Matni, CS16, Sp18

Memory Address

Recall: num=42 and num add = &num = 0x001F

* The variable that stores the address of another variable (like num add)
is called a pointer.

5/15/18 Matni, CS16, Sp18

Dereference Operator (*)

Pointers “point to” the variable whose address they store

Pointers can access the variable they point to directly
This access is done by preceding the pointer name with the
dereference operator (*)

— The operator itself can be read as “value pointed to by”

So, while num_add = 0x001F
*num_add =42

5/15/18 Matni, CS16, Sp18

Pointers

AGAIN:

* A pointer is the memory address of a variable

* When a variable is used as a call-by-reference argument,
it’s the actual address in memory that is passed

5/15/18 Matni, CS16, Sp18

Pointers Tell Us (or the Compiler)
Where To Find A Variable

* Pointers "point"” to a variable by telling where the variable is
located

int val = 5;
Cnt *otr = &val;)
> OXFE\ | 5

Ox83 OXFE

5/15/18 Matni, CS16, Sp18

Declaring Pointers

e Pointer variables must be declared to have a pointer type

e Example:
To declare a pointer variable p that can "point" to a variable of

type double:

double *p;

* The asterisk (*) identifies p as a pointer variable

5/15/18 Matni, CS16, Sp18

Multiple Pointer Declarations

* To declare multiple pointers in a statement, use the asterisk
before each pointer variable

* Example:
int *pl, *p2, vil, v2;

pl and p2 point to variables of type int
vl and v2 are variables of type int

5/15/18 Matni, CS16, Sp18

The address-of Operator

* The & operator can be used to determine the address of a
variable which can be assigned to a pointer variable

* Example: pl = &vl;

plis now a pointer to vl
vl can be called “the variable pointed to by p1”

5/15/18 Matni, CS16, Sp18

A Pointer Example

v1 and *p1 now refer to
the same variable

cout << vl << endl; vl pl

cout << *pl << endl;
0

output:

5/15/18 Matni, CS16, Sp18

Pointer Assignment

* The assignment operator = is used to assign the value of
one pointer to another

Example: If p1 still points to v1 (previous slide)

then the statement
p2 = pl;

causes *p2, *p1, and v1 all to name the same variable

5/15/18 Matni, CS16, Sp18

Caution! Pointer Assignments

* Some care is required making assignments to pointer variables

Assuming pl and p3 are pointers

pl p3; // changes the location that pl "points" to

*pl = *p3; // changes the value at the location that
// pl "points" to

5/15/18 Matni, CS16, Sp18

Uses of the Assignment Operator on Pointers

Before:

s
I

5/15/18 Matni, CS16, Sp18

Uses of the Assignment Operator on Pointers

Before:

pl

p2

Before:

pl

p2

5/15/18 Matni, CS16, Sp18

Pointer Assignment — Example 1

Figure A Figure B
X X

Consider this code:
int *pl, *p2, Xx;

pl = &x;
02 - g1 ARV

Which figure best represents this code?
A. Figure A

B. FigureB

C. Neither: the code is incorrect

5/15/18 Matni, CS16, Sp18

Pointer Assignment — Example 2

int x=10, y=20;

int *pl = &x, *p2 = &y;
p2 = pl;

int **p3;

p3 = &p2;

Q: How can | print out the value "10" using p2?
A: cout << *p2;

Q: How can | print out the value "10" using p3?
A: cout << **p3;

5/15/18 Matni, CS16, Sp18

Passing by Pointers! A Better Way!

void swapValue(int *x, int *y)
{
int tmp = *x;
X = *y;
¥y = tmp;
}
int main()
{
int a(30), b(40);
cout << a << " " << b << endl;
swapValue(&a, &b);
cout << a << " " << b << endl;

}

5/15/18 Matni, CS16, Sp18

5/15/18 Matni, CS16, Sp18

The new Operator

Using pointers, variables can be manipulated even if there is no identifier
for them

To create a pointer to a new “nameless” variable of type int:
pl = new int;

The new variable is referred to as *p1

*p1 can be used anyplace an integer variable can

Example: cin >> *pl;
*pl = *pl + 7;

5/15/18 Matni, CS16, Sp18

Dynamic Variables

e Variables created using the new operator are called
dynamic variables

* Dynamic variables are created and destroyed while the
program is running

 We don’t have to bother with naming them, just their pointers

5/15/18 Matni, CS16, Sp18

Basic Pointer Manipulations

//Program to demonstrate pointers and dynamic variables.
#include <iostream>
using namespace std;

int main()
{
int *pl, *p2;

pl = new int;
*nl = 42;

Basic Pointer Manipulations

//Program to demonstrate pointers and dynamic variables.
#include <iostream>
using namespace std;

int main()
{
int *pl, *p2;

pl = new int;

*pl = 42;

p2 = pl;

cout << "#*pl == << *pl << endl;
cout << "#p2 == " << *p2 << endl;

*p2 = 53;
cout << "#*pl we= " << *pl << endl;
cout << "*p2 == " << *p2 << endl;

pl = new int;

*pl = 88;

cout << "*pl == " << *pl << endl;
cout << ""p2 == << "p2 << endl;

cout << "Hope you got the point of this example!\n";
return 0;

}

Sample Dialogue

*pl == 42
*n2 == 42
*p] == 53
*p2 == 53
*pl == 88
*p2 == 53
Hope you got the point of this example!

Basic Memory Management: The Heap

* An area of memory called the freestore or the heap is reserved for
dynamic variables

— New dynamic variables use memory in the heap
— If all of the heap is used, calls to new will fail
— So you need to manage your unused dynamic variables...

* Un-needed memory can be recycled

— When variables are no longer needed, they can be deleted and the memory
they used is returned to the heap

5/15/18 Matni, CS16, Sp18

The delete Operator

 When dynamic variables are no longer needed, delete them
to return memory to the heap

 Example:
delete p;

* The value of p is now undefined and the memory used by the variable
that p pointed to is back in the heap

5/15/18 Matni, CS16, Sp18

Dangling Pointers

* Using delete on a pointer variable destroys the dynamic
variable pointed to (frees up memory too!)

 |f another pointer variable was pointing to the dynamic
variable, that variable is also now undefined

* Undefined pointer variables are called dangling pointers
— Dereferencing a dangling pointer (*p) is usually disastrous

5/15/18 Matni, CS16, Sp18

Automatic Variables

* As you know: variables declared in a function are created by
C++ and then destroyed when the function ends

— These are called automatic variables

 However, the programmer must manually control creation
and destruction of pointer variables with operators new and
delete

5/15/18 Matni, CS16, Sp18

Type Definitions

* A name can be assigned to a type definition, then used to declare variables

* The keyword typedef is used to define new type names

* Syntax:
typedef Known_ Type Definition New_Type_Name;

where, Known_Type_ Definition can be any data type

5/15/18 Matni, CS16, Sp18

Defining Pointer Types

* To help avoid mistakes using pointers, define a pointer type name

e Example: typedef int* IntPtr;

Defines a new type, IntPtr, for pointer variables containing pointers to int
variables

IntPtr p;
is now equivalent to saying: int *p;

5/15/18 Matni, CS16, Sp18

Multiple Declarations Again

e Using our new pointer type defined as typedef int* IntPtr;
Helps prevent errors in pointer declaration

* For example, if you want to declare 2 pointers, instead of this:
int *pl, p2;
// Careful! Only pl is a pointer variable!

do this:
IntPtr pl;

int p2;

5/15/18 Matni, CS16, Sp18

Pointer Reference Parameters

* A second advantage in using typedef to define a pointer type is seen in
parameter lists in functions, like...

 Example:
void sample function(IntPtr& pointer_var);

is less confusing than:
void sample function(int*& pointer var);

5/15/18 Matni, CS16, Sp18

YOUR TO-DOs

] Start Lab 7 on Wednesday
J Do HW12 by next Tuesday
J Study for your Midterm #2 on Thursday!

 Visit Prof’s and TAs‘ office hours if you need help!

 Sleep more than you study. Study more than you party.
And don’t forget to party...

5/15/18 Matni, CS16, Sp18

</LECTURE>

