
Pointers	

CS	16:	Solving	Problems	with	Computers	I	
Lecture	#12	

	
Ziad	Matni	

Dept.	of	Computer	Science,	UCSB	

•  Thursday,	5/17	in	this	classroom	
•  Starts	at	2:00	PM	**SHARP**	

–  Please	start	arriving	5-10	minutes	before	class	
•  I	may	ask	you	to	change	seats	
•  Please	bring	your	UCSB	IDs	with	you	

•  Closed	book:	no	calculators,	no	phones,	no	computers	
•  Only	allowed	ONE	8.5”x11”	sheet	of	notes	–	one	sided	only	

–  You	have	to	turn	it	in	with	your	exam	
•  You	will	write	your	answers	on	the	exam	sheet	itself.	
5/15/18	 Matni,	CS16,	Sp18	 2	

What’s	on	the	Midterm#2?	
EVERYTHING	From	Lectures	7	–	12,	including…	

•  Makefiles	

•  Debug	Techniques	

•  Numerical	Conversions	

•  Strings:	C++	vs	C-strings	

•  Strings	and	Characters:	Member	Functions	&	Manipulators	

•  File	I/O	

•  Arrays	

•  Pointers	(whatever	we	finish	today)	

5/15/18	 Matni,	CS16,	Sp18	 3	

Lecture	Outline	

•  Pointers	

5/15/18	 Matni,	CS16,	Sp18	 4	

Pointers	

•  A	pointer	is	the	memory	address	of	a	variable		

•  When	a	variable	is	used	as	a	call-by-reference	argument,		
it’s	the	actual	address	in	memory	that	is	passed		

5/15/18	 Matni,	CS16,	Sp18	 5	

Memory	Addresses	

•  The	address	of	a	variable	can	be	obtained	by	putting		
the	ampersand	character	(&)	before	the	variable	name.	

•  &	is	called	the	address-of	operator	

•  So,	while	num	=	42,				&num	=	0x1F	=	31	

•  You	can	assign	a	variable	to	an	address-of	another	variable	too!	
•  Example:				num_add	=	&num	

5/15/18	 Matni,	CS16,	Sp18	 6	

Address	 Data	
0x001D	 0	
0x001E	 -25	
0x001F	 42	
0x0020	 1332	
0x0021	 -4009	
0x0022	 7	
…	 …	

0x98A0	 31	

1	byte	

num	

num_add	

Memory	Address	

Recall:					num	=	42				and				num_add	=	&num	=	0x001F	

•  The	variable	that	stores	the	address	of	another	variable	(like	num_add)		
is	called	a	pointer.	

5/15/18	 Matni,	CS16,	Sp18	 7	

42	num	

num_add	

Dereference	Operator	(*)	

•  Pointers	“point	to”	the	variable	whose	address	they	store	
•  Pointers	can	access	the	variable	they	point	to	directly	
•  This	access	is	done	by	preceding	the	pointer	name	with	the		

dereference	operator	(*)	
–  The	operator	itself	can	be	read	as	“value	pointed	to	by”	

•  So,	while 	 		num_add	=	0x001F	 			
	 	 	 	 	*num_add	=	42	

5/15/18	 Matni,	CS16,	Sp18	 8	

42	num	

num_add	

Pointers	

AGAIN:	
•  A	pointer	is	the	memory	address	of	a	variable		

•  When	a	variable	is	used	as	a	call-by-reference	argument,		
it’s	the	actual	address	in	memory	that	is	passed		

5/15/18	 Matni,	CS16,	Sp18	 9	

Pointers	Tell	Us	(or	the	Compiler)	
Where	To	Find	A	Variable	

•  Pointers	"point"	to	a	variable	by	telling	where	the	variable	is	
located	

5/15/18	 Matni,	CS16,	Sp18	 10	

Declaring	Pointers	

•  Pointer	variables	must	be	declared	to	have	a	pointer	type	

•  Example:			
To	declare	a	pointer	variable	p	that	can	"point"	to	a	variable	of	
type	double:	

 double		*p;	

•  The	asterisk	(*)	identifies	p	as	a	pointer	variable	

5/15/18	 Matni,	CS16,	Sp18	 11	

Multiple	Pointer	Declarations	

•  To	declare	multiple	pointers	in	a	statement,	use	the	asterisk	
before	each	pointer	variable	

•  Example:					
 int	*p1,	*p2,	v1,	v2;	
	
p1	and	p2	point	to	variables	of	type	int	
v1	and	v2	are	variables	of	type	int	

5/15/18	 Matni,	CS16,	Sp18	 12	

The	address-of	Operator	

•  The	&	operator	can	be	used	to	determine	the	address	of	a	
variable	which	can	be	assigned	to	a	pointer	variable	

•  Example:												p1	=	&v1;	
	
						p1	is	now	a	pointer	to	v1	
						v1		can	be	called	“the	variable	pointed	to	by	p1”	

5/15/18	 Matni,	CS16,	Sp18	 13	

A	Pointer	Example	

v1	=	0;	
p1	=	&v1;	
*p1	=	42;	
cout	<<	v1	<<	endl;	
cout	<<	*p1	<<	endl;	

output:
 42

 42

5/15/18	 Matni,	CS16,	Sp18	 14	

v1 and *p1 now refer to
the same variable

0	
v1	 p1	

42	
v1	 p1	

Pointer	Assignment	

•  The	assignment	operator	=	is	used	to	assign	the	value	of		
one	pointer	to	another	

Example:				If	p1	still	points	to	v1	(previous	slide)	
																					then	the	statement	

	 	 	 	 	 	p2	=	p1;	
											

	 	causes	*p2,	*p1,	and	v1	all	to	name	the	same	variable	

5/15/18	 Matni,	CS16,	Sp18	 15	

42	
v1	 p2	=	p1	

Caution!	Pointer	Assignments	

•  Some	care	is	required	making	assignments	to	pointer	variables	

Assuming	p1	and	p3	are	pointers	

	p1	=	p3;	 	//	changes	the	location	that	p1	"points"	to	
	
*p1	=	*p3;		//	changes	the	value	at	the	location	that	
										 	//	p1	"points"	to	

5/15/18	 Matni,	CS16,	Sp18	 16	

Uses	of	the	Assignment	Operator	on	Pointers	

5/15/18	 Matni,	CS16,	Sp18	 17	

Uses	of	the	Assignment	Operator	on	Pointers	

5/15/18	 Matni,	CS16,	Sp18	 18	

Pointer	Assignment	–	Example	1	

Consider	this	code:	
int	*p1,	*p2,	x;		
p1	=	&x;		
p2	=	p1;	
	
Which	figure	best	represents	this	code?	
A.  Figure	A	
B.  Figure	B	
C.  Neither:	the	code	is	incorrect	

5/15/18	 Matni,	CS16,	Sp18	 19	

x	

p1	 p2	

x	

p1	 p2	

Figure	A	 Figure	B	

Pointer	Assignment	–	Example	2	

int	x=10,	y=20;		
int	*p1	=	&x,	*p2	=	&y;		
p2	=	p1;		
int	**p3;		
p3	=	&p2;	
	
Q:	How	can	I	print	out	the	value	"10"	using	p2?	
A:	cout	<<	*p2;	
Q:	How	can	I	print	out	the	value	"10"	using	p3?	
A:	cout	<<	**p3;	

5/15/18	 Matni,	CS16,	Sp18	 20	

10	 20	

x	 y	

p1	 p2	

10	 20	

x	 y	

p1	 p2	 p3	

Passing	by	Pointers!	A	Better	Way!	
void	swapValue(int	*x,	int	*y)	
{	
	int	tmp	=	*x;	
	*x	=	*y;	
	*y	=	tmp;	

}	
int	main()	
{	
	int	a(30),	b(40);	
	cout	<<	a	<<	"	"	<<	b	<<	endl;	
	swapValue(&a,	&b);	
	cout	<<	a	<<	"	"	<<	b	<<	endl;	

}	
	
5/15/18	 Matni,	CS16,	Sp18	 21	

5/15/18	 Matni,	CS16,	Sp18	 22	

The	new	Operator	

•  Using	pointers,	variables	can	be	manipulated	even	if	there	is	no	identifier	
for	them	

•  To	create	a	pointer	to	a	new	“nameless”	variable	of	type	int:
p1	=	new	int;	

•  The	new	variable	is	referred	to	as	*p1		
•  *p1	can	be	used	anyplace	an	integer	variable	can	
Example:				 	 	cin	>>	*p1;	
								 	 	*p1	=	*p1	+	7;	

5/15/18	 Matni,	CS16,	Sp18	 23	

Dynamic	Variables	

•  Variables	created	using	the	new	operator	are	called		
dynamic	variables	

•  Dynamic	variables	are	created	and	destroyed	while	the	
program	is	running	

•  We	don’t	have	to	bother	with	naming	them,	just	their	pointers	

5/15/18	 Matni,	CS16,	Sp18	 24	

42	
p1	
p2	 53	

88	

42	
p1	
p2	 53	

88	

Basic	Memory	Management:	The	Heap	

•  An	area	of	memory	called	the	freestore	or	the	heap	is	reserved	for	
dynamic	variables	
– New	dynamic	variables	use	memory	in	the	heap	
–  If	all	of	the	heap	is	used,	calls	to	new	will	fail	
–  So	you	need	to	manage	your	unused	dynamic	variables…	

•  Un-needed	memory	can	be	recycled	
– When	variables	are	no	longer	needed,	they	can	be	deleted	and	the	memory	

they	used	is	returned	to	the	heap	

5/15/18	 Matni,	CS16,	Sp18	 27	

The	delete	Operator	

•  When	dynamic	variables	are	no	longer	needed,	delete	them		
to	return	memory	to	the	heap	

•  Example:											
	 	 	 	delete	p;	
	

•  The	value	of	p	is	now	undefined	and	the	memory	used	by	the	variable	
that	p	pointed	to	is	back	in	the	heap	

5/15/18	 Matni,	CS16,	Sp18	 28	

Dangling	Pointers	

•  Using	delete	on	a	pointer	variable	destroys	the	dynamic	
variable	pointed	to	(frees	up	memory	too!)	

•  If	another	pointer	variable	was	pointing	to	the	dynamic	
variable,	that	variable	is	also	now	undefined	

•  Undefined	pointer	variables	are	called	dangling	pointers		
– Dereferencing	a	dangling	pointer	(*p)	is	usually	disastrous	

5/15/18	 Matni,	CS16,	Sp18	 29	

Automatic	Variables	

•  As	you	know:	variables	declared	in	a	function	are	created	by		
C++	and	then	destroyed	when	the	function	ends	
–  These	are	called	automatic	variables	

•  However,	the	programmer	must	manually	control	creation	
and	destruction	of	pointer	variables	with	operators	new	and	
delete		

5/15/18	 Matni,	CS16,	Sp18	 30	

Type	Definitions	

•  A	name	can	be	assigned	to	a	type	definition,	then	used	to	declare	variables	

•  The	keyword	typedef	is	used	to	define	new	type	names	

•  Syntax:			
				typedef	Known_Type_Definition		New_Type_Name;	
	
	 	where,	Known_Type_Definition	can	be	any	data	type	

5/15/18	 Matni,	CS16,	Sp18	 31	

Defining	Pointer	Types	

•  To	help	avoid	mistakes	using	pointers,	define	a	pointer	type	name	

•  Example:						typedef	int*	IntPtr;	
	
Defines	a	new	type,	IntPtr,	for	pointer	variables	containing	pointers	to	int	
variables	

IntPtr	p;	
is	now	equivalent	to	saying:			int	*p;		

5/15/18	 Matni,	CS16,	Sp18	 32	

Multiple	Declarations	Again	

•  Using	our	new	pointer	type	defined	as		typedef	int*	IntPtr;	
	 	 	Helps	prevent	errors	in	pointer	declaration	

•  For	example,	if	you	want	to	declare	2	pointers,	instead	of	this:	
			int	*p1,	p2;		
	 	//	Careful!	Only	p1	is	a	pointer	variable!	
	do	this:	

						 	IntPtr	p1;	
	 	int	p2;	

5/15/18	 Matni,	CS16,	Sp18	 33	

Pointer	Reference	Parameters	

•  A	second	advantage	in	using	typedef	to	define	a	pointer	type	is	seen	in	
parameter	lists	in	functions,	like…	

•  Example:			
	 	void	sample_function(IntPtr&	pointer_var);	
	

is	less	confusing	than:	
	 	void	sample_function(int*&	pointer_var);	

5/15/18	 Matni,	CS16,	Sp18	 34	

YOUR	TO-DOs	

q Start	Lab	7	on	Wednesday	
q Do	HW12	by	next	Tuesday	
q Study	for	your	Midterm	#2	on	Thursday!	

q Visit	Prof’s	and	TAs‘	office	hours	if	you	need	help!	

q Sleep	more	than	you	study.	Study	more	than	you	party.	
And	don’t	forget	to	party…	

5/15/18	 Matni,	CS16,	Sp18	 35	

5/15/18	 Matni,	CS16,	Sp18	 36	

