
Programming	with	Arrays	
Intro	to	Pointers	
CS	16:	Solving	Problems	with	Computers	I	

Lecture	#11	
	

Ziad	Matni	
Dept.	of	Computer	Science,	UCSB	

•  Thursday,	5/17	in	this	classroom	
•  Starts	at	2:00	PM	**SHARP**	
–  Please	start	arriving	5-10	minutes	before	class	

•  I	may	ask	you	to	change	seats	
•  Please	bring	your	UCSB	IDs	with	you	

•  Closed	book:	no	calculators,	no	phones,	no	computers	
•  Only	allowed	ONE	8.5”x11”	sheet	of	notes	–	one	sided	only	
–  You	have	to	turn	it	in	with	your	exam	

•  You	will	write	your	answers	on	the	exam	sheet	itself.	
5/10/18	 Matni,	CS16,	Sp18	 2	

What’s	on	the	Midterm#2?	
EVERYTHING	From	Lectures	7	–	12,	including…	

•  Makefiles	

•  Debug	Techniques	
•  Numerical	Conversions	

•  Strings:	C++	vs	C-strings	
•  Strings	and	Characters:	Member	Functions	&	Manipulators	

•  File	I/O	
•  Arrays	
•  Pointers	
5/10/18	 Matni,	CS16,	Sp18	 3	

Lecture	Outline	

•  Programming	with	Arrays	
•  Sequential	Search	of	Arrays	
•  Multi-Dimensional	Arrays	

•  Introduction	to	C++	Memory	Map	
•  Introduction	to	Pointers	

5/10/18	 Matni,	CS16,	Sp18	 4	

Summary	Difference	

void	thisFunction(int	arr[],	int	size);	
Array	“arr”	gets	passed	and	whatever	changes	are	done	inside	the	function	will	result	in	changes	
to	“arr”	where	it’s	called.	

	
void	thisFunction(const	int	arr[],	int	size);	
Array	“arr”	gets	passed	BUT	whatever	changes	are	done	inside	the	function	will	NOT	result	in	
changes	to	“arr”	where	it’s	called.	
	

int*	thisFunction(int	arr[],	int	size);	
Array	“arr”	gets	passed	and	whatever	changes	are	done	inside	the	function	will	result	in	changes	
to	“arr”	where	it’s	called.	ADDITIONALLY,	a	new	pointer	to	an	array	“thisFunction”	is	passed	back	
(DON’T	WORRY	ABOUT	THIS	UNTIL	AFTER	WE	LEARN	ABOUT	POINTERS!)		
5/10/18	 Matni,	CS16,	Sp18	 5	

Programming	With	Arrays	

•  The	size	requirement	for	an	array	might	need	to	be	un-fixed	
–  Size	is	often	not	known	when	the	program	is	written	

•  A	common	solution	to	the	size	problem		
	 	 	 	 	 	 	 	 	 	(while	still	using	“regular”	arrays):	
– Declare	the	array	size	to	be	the	largest	that	could	be	needed	
– Decide	how	to	deal	with	partially	filled	arrays	

5/10/18	 Matni,	CS16,	Sp18	 6	

See	demo	file:	
fillingUpArray.cpp	

Partially	Filled	Arrays	

•  When	using	arrays	that	are	partially	filled…	
– Functions	dealing	with	the	array	may	not	need	to	know	the		
	 	 	 	 	 	 	 	 	 	 	 	 	declared	size	of	the	array	

– Only	how	many	maximum	number	of	elements		
	need	to	be	stored	in	the	array!	

•  A	parameter	-	let’s	call	it	number_used	-	may	be	sufficient	to	
ensure	that	referenced	index	values	are	legal	

5/10/18	 Matni,	CS16,	Sp18	 7	

See	demo	file:	
fillingUpArray.cpp	

Searching	Arrays	
•  A	sequential	search	is	one	way	to	search	an	array	for	a	given	value.	The	

algorithm	is	as	follows:	
	
1.  Look	at	each	element	from	first	to	last	to	see	if	the	target	value	is	equal	to	

any	of	the	array	elements	

2.  The	index	of	the	target	value	is	returned	to	indicate	where	the	value	was	
found	in	the	array	

3.  A	value	of	-1	is	returned	if	the	value	was	not	found	anywhere	

Pros?	Cons?	

5/10/18	 Matni,	CS16,	Sp18	 8	

5/10/18	 Matni,	CS16,	Sp18	 9	

Sequential	Search	

Task:	Search	the	array	for	“ff”	

ARRAY	a[]		a[0]			a[1]			a[2]			a[3]				a[4]				a[5]				a[6]				a[7]			a[8]			a[9]			a[10]		a[11]		a[12]		

Result:	in	position	9	

5/10/18	 Matni,	CS16,	Sp18	 10	

Simple	Sequential	
Search	Function	
Example	

int	SeqSearch	
(int	arr[],	int	array_size,	int	target)	
{	

	int	index(0);	
	bool	found(false);	
	while	((!found)	&&	(index	<	array_size))	
	{	
	 	if	(arr[index]	==	target)	
	 	 	found	=	true;	
	 	else	
	 	 	index++;	
	}	
	if	(found)		
	 	return	index;	
	else	
	 	return	-1;	

}	
	

1.  Look	for	a	target	value	inside	
of	a	given	array	

2.  If	you	find	it,	return	its	location	
(i.e.	index)	in	the	array	

3.  If	you	don’t	find	it,	return	-1		

Multi-Dimensional	Arrays	
•  C++	allows	arrays	with	multiple	index	dimensions	(have	to	be	same	type,	tho…)	
•  EXAMPLE:	char	page[30][100];	

declares	an	array	of	characters	named	page	
–  page	has	two	index	values:	
		The	1st	ranges	from	0	to	29	
	The	2nd	ranges	from	0	to	99	

–  Each	index	in	enclosed	in	its	own	brackets	

•  Page	can	be	visualized	as	an	array	of	30	rows	and	100	columns	
–  page	is	actually	an	array	of	size	30	
–  page's	base	type	is	an	array	of	100	characters	

5/10/18	 Matni,	CS16,	Sp18	 12	

[0][0]	 [0][1]	 …	 [0][98]	 [0][99]	

[1][0]	 [1][1]	 …	 [1][98]	 [1][99]	

…	 …	 …	 …	 …	

[28][0]	 [28][1]	 …	 [28][98]	 [28][99]	

[29][0]	 [29][1]	 …	 [29][98]	 [29][99]	

See	demo	file:	
multidimensionalDemo.cpp	

Program	Example:	Grading	Program	

•  Grade	records	for	a	class	can	be	stored	in	a	two-dimensional	array	

•  A	class	with	4	students	and	3	quizzes	the	array	could	be	declared	as	
		 	 	 	 	int	grade[4][3];	
–  The	first	array	index		refers	to	the	number	of	a	student	
–  The	second	array	index	refers	to	a	quiz	number	

•  Your	textbook,	Ch.	7,	Display	7.14	has	an	example	

5/10/18	 Matni,	CS16,	Sp18	 13	

Each	student	(0	thru	3)	has	
3	grades	(0	thru	2)	

5/10/18	 Matni,	CS16,	Sp18	 14	

Use	Nested	for-loops	to	Go	Through	a	MDA	

Example:	
	
const	int	MAX1	=	10,	MAX2	=	20;	
int	arr[MAX1][MAX2];	
…	
for	(int	i	=	0;	i	<	MAX1;	i++)	
	for	(int	j	=	0;	j	<	MAX2;	j++)	
	 	cout	<<	arr[i][j];	

5/10/18	 Matni,	CS16,	Sp18	 15	

Initializing	MDAs	

•  Recall	that	you	can	do	this	for	uni-dimensional	arrays	and	get	all	elements	
initialized	to	zero: 	 	double	numbers[100]	=	{0};	

•  For	multidimensional	arrays,	it’s	similar	syntax:	
double	numbers[5][100]	=	{	{0},	{0}	};	

OR:	
double	numbers[5][100]	=	{0};	

•  What	would	this	do?	
double	numbers[2][3]	=	{	{6,7},	{8,9}	};	

	
5/10/18	 Matni,	CS16,	Sp18	 16	

See	demo	file:	
multidimensionalDemo.cpp	

Multidimensional	Array	Parameters	in	Functions	

•  Recall	that	the	size	of	an	array	is	not	needed	when	declaring	a	
formal	parameter:	
		void	display_line(char	a[],	int	size);			

•  BUT	the	base	type	must	be	completely	specified	in	the	
parameter	declaration	of	a	multi-dimensional	array	
void	display_page(char	page[][100],	int	size_dimension1);	

Look!	No	size!	

Base	has	a	size	defined!	

5/10/18	 Matni,	CS16,	Sp18	 17	

Size	is	here	instead!	

5/10/18	 Matni,	CS16,	Sp18	 18	

INTRO	TO	POINTERS	
	

Section	9.1	in	book	

Passing	by	Values	
What	does	this	code	print	out?	

void	swapValue(int	x,	int	y)	
{	
	int	tmp	=	x;	
	x	=	y;	
	y	=	tmp;	

}	
int	main()	
{	
	int	a(30),	b(40);	
	cout	<<	a	<<	"	"	<<	b	<<	endl;	
	swapValue(a,	b);	
	cout	<<	a	<<	"	"	<<	b	<<	endl;	

}	
	5/10/18	 Matni,	CS16,	Sp18	 19	

Is	It:	
A.	
30	40	
30	40	
	
B.	
30	40	
40	30	
	
C.	
Something	else	

Pointers	

•  A	pointer	is	the	memory	address	of	a	variable		

•  When	a	variable	is	used	as	a	call-by-reference	argument,		
it’s	the	actual	address	in	memory	that	is	passed		

5/10/18	 Matni,	CS16,	Sp18	 20	

Memory	Addresses	

•  Consider	int	variable	num	that	holds	the	int	value	42	
•  num	is	assigned	a	place	in	memory	(what	does	that??)	

•  In	this	example	the	address	of	that	place	in	memory	is	0x001F	
–  Generally,	memory	addresses	use	hexadecimals		

	 	 	 	(and	usually	8	of	them,	not	just	4…	but	this	is	ONLY	an	example…)	
–  The	“0x”	at	the	start	is	just	to	indicate	the	number	is	a	hexadecimal	

5/10/18	 Matni,	CS16,	Sp18	 21	

Address	 Data	
0x001D	 0	
0x001E	 -25	
0x001F	 42	
0x0020	 1332	
0x0021	 -4009	
0x0022	 7	

1	byte	

num	

Memory	Addresses	

•  The	address	of	a	variable	can	be	obtained	by	putting		
the	ampersand	character	(&)	before	the	variable	name.	

•  &	is	called	the	address-of	operator	

•  Example:							
int	num_add	=	#					
will	result	in	num_add	to	hold		the	value	0x001F	(or	31	in	decimal)	

5/10/18	 Matni,	CS16,	Sp18	 22	

Address	 Data	
0x001D	 0	
0x001E	 -25	
0x001F	 42	
0x0020	 1332	
0x0021	 -4009	
0x0022	 7	
…	 …	

0x98A0	 31	

1	byte	

num	

num_add	

YOUR	TO-DOs	

q Turn	in	Lab	6	on	Monday	
q Do	HW11	by	next	Tuesday	
q Study	for	your	Midterm	#2	on	Thursday!	

q Visit	Prof’s	and	TAs‘	office	hours	if	you	need	help!	

q Enjoy	the	beautiful	outdoors	

5/10/18	 Matni,	CS16,	Sp18	 23	

5/10/18	 Matni,	CS16,	Sp18	 24	

