Character Functions & Manipulators
Arrays in C++

CS 16: Solving Problems with Computers |
Lecture #10

Ziad Matni
Dept. of Computer Science, UCSB

Lecture Outline

e Useful character manipulators & functions

* Arrays in C++

5/8/18 Matni, CS16, Sp18

See demo files:
get_example.cpp

Member Functions: get and getline |getiine_example.cpp

Allow you to use input streams that include white-spaces
— Unlike cin, which separates inputs by white-spaces

— Recall: white-space = space, tab, newline characters

.get .getline

char c¢_fin, c_cin; string fstring, cin_string;
ifstream inf; ifstream inf;

inf.get(c_fin); getline(inf, fstring);
cin.get(c_cin); getline(cin, cin_string);

5/8/18 Matni, CS16, Sp18

getline function

For standard inputs, cin is fine: but it ignores space, tabs, and newlines

Sometimes, you want to get the entire line of data!

— And stop at the newline

Best to use the function getline for that purpose.

You have to include the <iostream> library (which you likely already do!)

Popular Usage:
getline(ifstream_object, string);
getline(cin, string);

5/8/18 Matni, CS16, Sp18

Additional Note About getline

* You can customize what character a getline stops “getting” info
— You can define the “character delimiter”
— By default, that’s a newline char

Example:

getline(cin, VariableX, ‘m’) //stops at the char ‘m’

If the standard input is “Hello, I must be going”,
then VariableX will be “Hello, I ”

5/8/18 Matni, CS16, Fal7

Character Functions

* Several predefined functions exist to facilitate working with
characters

* The cctype library is required for most of them

#include <cctype>
using namespace std;

5/8/18 Matni, CS16, Sp18

The toupper Function

e toupper returns the argument's upper case character
—toupper('a') returns'A’
—toupper('A') returns'A'

DOES NOT WORK WITH STRINGS!
IT’"S FOR CHARACTERS ONLY!

5/8/18 Matni, CS16, Sp18

The tolower Function

e Similar to toupper function...

* tolower returns the argument's lower case character

—tolower('a') returns'a’
—tolower('A') returns'a’

5/8/18 Matni, CS16, Sp18

The isspace Function

* jsspace returns true if the argument is a whitespace
(spaces, tabs, and newlines)
— So, isspace(" ') returns true, so does
Example:
if (isspace(next))
cout << '-"';
else

cout << next;

Prints a '-' if next contains a space, tab, or newline character

5/8/18 Matni, CS16, Sp18

5/8/18

Some Predefined Character Functions in cctype (part 2 of 2)

Function

A supper (Char_Exp)

islower (Char_Exp)

Asalpha(Char_Exp)

isdigit(Char_Exp)

isspace(Char Exp)

Description

Returns true pro-
vided Char_Exp is
an uppercase let-
ter; otherwise,
returns false.

Returns true pro-
vided Char_Exp is
a lowercase letter;
otherwise, returns
false.

Returns true pro-
vided Char Exp is
a letter of the
alphabet; other-
wise, returns
false.

Returns true pro-
vided Char_Exp is
one of the digits
‘O’ through "9’;
otherwise, returns
false.

Returns true pro-
vided Char_Exp is
a whitespace
character, such as
the blank or new-
line symbol; other-
wise, returns false.

Example

if (isupperdcc))
cout << € <<
else
cout << C

<< is not uppercase."';

is uppercase."';

char ¢ = "a’;

if (islower(c))
Cout =< C =< is lTowercase.';

Outputs: a is lowercase.

char ¢ - '$’;
if Cisalphacc))
COUTt << C <<

is a letrer."'";

else
cout << cC
<< " 4is not a letter."';
Outputs: $ is not a letter.

i Cisdigit(’37))

cout =< "It's a digit.";
else

cout << "It's not a digit.";
OQutputs: It's a digit.

//Skips over one "word" and
//sets ¢ equal to the first
//whitespace character after
//the "word™:

do

{
cin.get(c);
} while (! +isspace(c));

Character Manipulators Work Too!

* Include <cctype> to use with, for example, toupper|()
string s = “hello”;
s[@] = toupper(s[@]);
cout << s; // Will display “Hello”

e ..or to use with tolower()
string s = “HELLO”;
for (int 1=0; i < 5; i++) s[i] = tolower(s[i]);
cout << s; // Will display “hello”

5/8/18 Matni, CS16, Sp18

Manipulators

* Atype of function called in a nontraditional way

 Manipulators, in turn, call member functions
— May or may not have arguments to them

e Used after the insertion operator (<<) as if the
manipulator function call is an output item

5/8/18 Matni, CS16, Sp18

The setw Manipulator

* setw sets spaces for output: only effective for one use
— Found in the library <iomanip>

e Example: cout << "Start" << setw(4) << 10
<< setw(4) << 20 << setw(6) << 30;

produces: Start 10 20 30

2 Spaces 4 Spaces

The 15t setw(4) ensures 4 spaces between “Start" and 10, INCLUSIVE of the spaces taken up by 10.
The 219 setw(4) ensures 4 spaces between 10 and 20, INCLUSIVE of the spaces taken up by 20.
The 3 setw(6) ensures 6 spaces between 20 and 30, INCLUSIVE of the space taken up by 30.

5/8/18 Matni, CS16, Sp18

Converting Data Types in C++
stoi to string

stoi() String-to-Integer conversion
* Found in <string> library.
Takes string as argument and returns int type.
* Example: int x = stoi(“66”) // x = 66

If the string is NOT a number representation, it will cause a runtime error!

to_string() Number-to-String conversion

e Found in <string> library.

* Takes int or double as argument and returns string type.

* Example: string y = to _string(6.32) // y = “6.32”

5/8/18 Matni, CS16, Sp18

Converting Data Types in C++
Combining Characters with Strings

* Consider this code using C++ Strings:
string msgl = "Hello", msg2 = "World";
char sp = ' '; // space character
string msg3 = msgl + msg2;
string msg4 msgl + sp + msg2;

string msg4 = msgl + sp + msg2[0];
string msg4 = msgl[@] + sp + msg2[@];~<::::{
Does NOT Compile!

* You can create a string that is a concatenation of strings + characters

* You CANNOT create a string out of only characters!
— Concatenation is just for strings - not for characters.

5/8/18 Matni, CS16, Sp18

ARRAYS

,44 ,AQ [Ea o |
T
vv’ vv‘ Ly ¥

Introduction to Arrays

* An array is used to process a collection of data of the
type

— Examples: A list of people’s last names
A list of numerical measurements

* Why do we need arrays?

— Imagine keeping track of 1000 test scores in memory!
* How would you name all the variables?
 How would you process each of the variables?

5/8/18 Matni, CS16, Sp18

Declaring an Array

int score[5];
// Declares an array of ints called score that has 5 elements:

// score[@], score[l], score[2], score[3], score[4]
subscript or index

* Note the size of the array is the highest index value + 1
— Because indexing in C++ starts at 0, not 1

— The index can be an also

5/8/18 Matni, CS16, Sp18

Loops And Arrays

* for-loops are commonly used to step through arrays

Last index is (size — 1)

Example:
int max = 9, size = 5; /

for (i = 0; 1 < size; i++)
First out << max - score[i] << endl;
index is 0

displays the difference between each score and the
maximum score stored in an array

5/8/18 Matni, CS16, Sp18

Declaring An Array

* When you declare an array, you MUST declare its size as well!

5/8/18

int MyArray[5]; { ... } used for full-array initializations

//Array declared has 5 non—initial{;ed elements

int MyArray[] = {1, 2, 5, 7, 0};
// Array declared has 5 initialized elements

int MyArray[5] = {1, 2, 5, 7, O};
// This is ok too!

Matni, CS16, Sp18

Initializing Arrays

* |t's recommended to initialize an array when it is declared

— The values for the indexed variables are enclosed in braces and separated by
commas

« Example: 1int children[3] = {2, 12, 1};
Is equivalent to:
int children[3];
children[@] = 2;
children[1l] = 12;
children[2] = 1;

5/8/18 Matni, CS16, Sp18

Constants and Arrays

* You can use variables as indices in arrays, BUT NOT to declare them!
* However, you can use constants to declare size of an array

Example:

const int NUMBER _OF STUDENTS = 50; // can change this later
int score[NUMBER OF STUDENTS];

for (int 1 = @; i < NUMBER_OF STUDENTS; i++)
cout << score[i] << endl;

* To make this code work for any number of students,
simply change the value of the constant in the 15t line...

5/8/18 Matni, CS16, Sp18

An Array in Memory

address of a[0]

\ 1022
1023

On this computer each 1024
indexed variable uses 1025
2 bytes, so a[3] begins 1026
2 X3 =6 bytes after 1027
the start of a[0]. \ 1028
1029
1030
1031
1032
There is no indexed 1033
variable a[6], but if 1034

there were one, it \
would be here.

There is no indexed
variable a[7], butif
there were one, it
would be here.

5/8/18

int a[6];

VVVVVY

—
=

When reserving memory space for an array in
C++, the compiler needs to know just 3 things:

1. A starting address (location)
2. How many elements in array
3. What data type the array elements are

al2]
al3]
al4]

als]
some variable
named stuff
some variable
named more_stuff

Matni, CS16, Sp18

If the compiler needs to determine
the address of a[3], for example
It starts at a[0] (it knows this address!)
It counts past enough memory for
three integers to find a[3]

Array Index Out of Range

A common error by programmers is using a nonexistent index
Index values for int a[6] are the values 0 through 5

An index value that’s not allowed by the array declaration
is called out of range

Using an out of range index value does not always produce an error
message by the compiler!!!

— It produces a WARNING, but the program will often give a run-time error

— So, DON’T rely on the compiler catching your mistakes! Be Proactive!

5/8/18 Matni, CS16, Sp18

See demo files:
basic_arrays.cpp

Out of Range Problems

Let’s say we have the following: int a[6], 1 = 7;
Then we execute the statement: a[i] = 238;

This causes...
— The computer to calculate the address of the illegal a[7]
— This address could be where some other variable in the program is stored!
— The value 238 will be stored at the address calculated for a[7]

Congrats! You’ve now messed with the integrity of computer memory!
You could get run-time errors OR YOU MIGHT NOT!!! (unpredictable)
This is bad practice! Keep track of your arrays!

5/8/18 Matni, CS16, Sp18

Default Values

* |f too few values are listed in an initialization statement
— The listed values are used to initialize the first of the indexed variables
— The remaining indexed variables are initialized to a zero of the base type

e Example: int a[10] = {5, 5}; // Note array size given
initializes a[0] and a[1] to 5
and a[2] through a[9] to O
NOTE:

This is called an extended initializer list and it only works in the latest
versions of C++ compilers (version 11 or later).

5/8/18 Matni, CS16, Sp18

Range-Based For Loops

 C++11 (and later) includes a new type of for loop:
The range-based for-loop simplifies iteration over every element in an array.

For example, the following code outputs: 246 8

int arr[] = {2, 4, 6, 8};
for (int x : arr)

{
}

cout << x << “ 7;

5/8/18 Matni, CS16, Sp18

Arrays in Functions

* Indexed variables can be arguments to functions

e Example: If a program contains these declarations:
void my function(int x);

int i, n, a[l1l0];

Variables a[0] through a[9] are of type int, so making these calls IS legal:
my function(a[0@]);
my_ function(a[3]);
my_ function(a[i]);

BUT! This call is NOT legal:
my function(a[]); or my function(a);

5/8/18 Matni, CS16, Sp18

Arrays as Function Arguments

* You can make an entire array a formal parameter for a function
— That is, as an input to a function

e But you cannot make an entire array the RETURNED value for a function
— That is, as an output from a function

* An array parameter behaves much like a call-by-reference parameter

5/8/18 Matni, CS16, Sp18

Passing an Array into a Function

 An array parameter is indicated using empty brackets in the
parameter list such as

void fill up(int a[], int size);

5/8/18 Matni, CS16, Sp18

Function Calls With Arrays

If function fill_up is declared in this way (note: uses [] !!)
void fill up(int a[], int size);

and array score is declared this way:
int score[5], number_of scores = 5;

fill_up is called in this way (note: no [] !!)
fill up(score, number_of_scores);

Note that the array values can be changed by the function

— Even though it “looks like” it’s being passed-by-value - it’s actually being
passed-by-reference. We'll discuss this more with “pointers” another time...

5/8/18 Matni, CS16, Sp18

Function with an Array Parameter

Function Declaration
void fill_up(int all, Tnt size);
//Precondition: size is the declared size of the array a.

//The user will type in size integers.
//Postcondition: The array a is filled with size integers

//from the keyboard.
Function Definition

//Uses Tostream:
void fill_up(int all, Tnt size)
{

using namespace std;
cout << "Enter " << size << " numbers:\n";

for (int i = 0; 1 < size; i++)
cin >> alil;

size—-—;
cout << "The Tast array index used is " << size << endl;

Array Argument Details

* Recall: What does the computer know about an array?
— The base type
— The address of the first indexed variable
— The number of indexed variables

 What does a function need know about an array argument?
— The base type
— The address of the first indexed variable

5/8/18 Matni, CS16, Sp18

Array Parameter Considerations

* Because a function does not know the size of an array
argument...

— The programmer should include a formal parameter that specifies
the size of the array

— The function can process arrays of various sizes

e Example: function fill_up from on pg. 392 of the textbook can be used to fill
an array of any size:

fill up(score, 5);
fill up(time, 10);

5/8/18 Matni, CS16, Sp18

But...
IS there a way to CALCULATE the Size of an Array?

* Yes, there is... but not with regular arrays

* You will want to use “dynamic arrays”
— We’'ll talk about those later on with “pointers”

* For now, get used to the idea of passing the size of an array
into a function that has the array as argument.

5/8/18 Matni, CS16, Sp18

See demo files:
array_function.cpp

const Modifier

Array parameters allow
a function to change the values stored in the array arg.
— Similar to how a parameter being passed by reference would be

If you want a function to not change the values of the array argument, use the
modifier const

An array param. modified w/ const is called a constant array parameter
— Example:
void show the world(const int a[], int size);

If const is used to modify an array parameter:
it has to be used in both the function declaration and definition

5/8/18 Matni, CS16, Sp18

Returning An Array

* Recall that functions can return a value of type int, double,
char, ..., or even a class type (like string)

 BUT functions cannot return arrays

 We’'ll learn later how to return a pointer to an array instead...

5/8/18 Matni, CS16, Sp18

YOUR TO-DOs

J Begin Lab6 on Wednesday
(1 Do HW10 by next Thursday

 Visit Prof’s and TAs‘ office hours if you need help!

 Practice all your skills

5/8/18 Matni, CS16, Sp18

</LECTURE>

