
Character	Functions	&	Manipulators	
Arrays	in	C++	

CS	16:	Solving	Problems	with	Computers	I	
Lecture	#10	

	
Ziad	Matni	

Dept.	of	Computer	Science,	UCSB	

Lecture	Outline	

•  Useful	character	manipulators	&	functions	

•  Arrays	in	C++	

5/8/18	 Matni,	CS16,	Sp18	 2	

Member	Functions:	get	and	getline	

•  Allow	you	to	use	input	streams	that	include	white-spaces	
– Unlike	cin,	which	separates	inputs	by	white-spaces	
– Recall:	white-space	=	space,	tab,	newline	characters	

5/8/18	 Matni,	CS16,	Sp18	 3	

char	c_fin,	c_cin;	
ifstream	inf;	
	
inf.get(c_fin);	
cin.get(c_cin);	

string	fstring,	cin_string;	
ifstream	inf;	
	
getline(inf,	fstring);	
getline(cin,	cin_string);	

.get	 .getline	

See	demo	files:	
get_example.cpp	
getline_example.cpp	

getline	function	
•  For	standard	inputs,	cin	is	fine:	but	it	ignores	space,	tabs,	and	newlines	

•  Sometimes,	you	want	to	get	the	entire	line	of	data!	
–  And	stop	at	the	newline	

•  Best	to	use	the	function	getline	for	that	purpose.	

•  You	have	to	include	the	<iostream>	library	(which	you	likely	already	do!)	
•  Popular	Usage:		

	 	 	 	 	getline(ifstream_object,	string);	
	 	 	 	 	getline(cin,	string);	

5/8/18	 Matni,	CS16,	Sp18	 4	

Additional	Note	About	getline	

•  You	can	customize	what	character	a	getline	stops	“getting”	info	
–  You	can	define	the	“character	delimiter”	
–  By	default,	that’s	a	newline	char	

Example:	
	getline(cin,	VariableX,	‘m’)	 	//stops	at	the	char	‘m’	

	

If	the	standard	input	is	 	 	 	“Hello,	I	must	be	going”,		
	 	then	VariableX	will	be	 	“Hello,	I	”	

5/8/18	 Matni,	CS16,	Fa17	 5	

Character	Functions	

•  Several	predefined	functions	exist	to	facilitate	working	with	
characters	

•  The	cctype	library	is	required	for	most	of	them	
	
	 	#include	<cctype>	
	 	using	namespace	std;	

5/8/18	 Matni,	CS16,	Sp18	 6	

	The	toupper	Function	

•  toupper	returns	the	argument's	upper	case	character		
– toupper('a')		returns	'A'	
– toupper('A')		returns	'A'	

DOES	NOT	WORK	WITH	STRINGS!		
IT’S	FOR	CHARACTERS	ONLY!	

5/8/18	 Matni,	CS16,	Sp18	 7	

	The	tolower	Function	

•  Similar	to	toupper	function…	

•  tolower	returns	the	argument's	lower	case	character		
– tolower('a')		returns	'a'	
– tolower('A')		returns	'a'	

5/8/18	 Matni,	CS16,	Sp18	 8	

The	isspace	Function	

•  isspace	returns	true	if	the	argument	is	a	whitespace		
(spaces,	tabs,	and	newlines)	

–  So,	isspace('		')	returns	true,	so	does	isspace(‘\n’)	
Example:					

if	(isspace(next))	
	cout	<<	'-';	

else	
	cout	<<	next;	

Prints	a	'-'	if	next	contains	a	space,	tab,	or	newline	character	

5/8/18	 Matni,	CS16,	Sp18	 9	

5/8/18	 10	

Character	Manipulators	Work	Too!	

•  Include	<cctype>	to	use	with,	for	example,	toupper()	
string	s	=	“hello”;	
s[0]	=	toupper(s[0]);	
cout	<<	s;			//	Will	display	“Hello”	

•  …or	to	use	with	tolower()	
	string	s	=	“HELLO”;	
	for	(int	i=0;	i	<	5;	i++)	s[i]	=	tolower(s[i]);	
	cout	<<	s;	 	//	Will	display	“hello”	

	
5/8/18	 Matni,	CS16,	Sp18	 11	

Manipulators	

•  A	type	of	function	called	in	a	nontraditional	way	

•  Manipulators,	in	turn,	call	member	functions	
– May	or	may	not	have	arguments	to	them	

•  Used	after	the	insertion	operator	(<<)	as	if	the		
manipulator	function	call	is	an	output	item	

5/8/18	 Matni,	CS16,	Sp18	 12	

The	setw	Manipulator	

•  setw	sets	spaces	for	output:	only	effective	for	one	use	
–  Found	in	the	library	<iomanip>	

•  Example:				cout	<<	"Start"	<<	setw(4)	<<	10	
						 	 		 	 	 	 	 	<<	setw(4)	<<	20	<<	setw(6)	<<	30;	
	 	produces:				Start					10						20								30	

2 Spaces 4 Spaces

•  The 1st setw(4) ensures 4 spaces between “Start" and 10, INCLUSIVE of the spaces taken up by 10.
•  The 2nd setw(4) ensures 4 spaces between 10 and 20, INCLUSIVE of the spaces taken up by 20.
•  The 3rd setw(6) ensures 6 spaces between 20 and 30, INCLUSIVE of the space taken up by 30.

13	5/8/18	 Matni,	CS16,	Sp18	

Converting	Data	Types	in	C++	
stoi	 	 	 	 	to_string	

stoi() 	 		 	 	String-to-Integer	conversion	
•  Found	in	<string>	library.	
•  Takes	string	as	argument	and	returns	int	type.	
•  Example: 	 	int	x	=	stoi(“66”)		//	x	=	66	
•  If	the	string	is	NOT	a	number	representation,	it	will	cause	a	runtime	error!	

to_string() 	 		Number-to-String	conversion	
•  Found	in	<string>	library.	
•  Takes	int	or	double	as	argument	and	returns	string	type.	
•  Example: 	 	string	y	=	to_string(6.32)		//	y	=	“6.32”	

5/8/18	 Matni,	CS16,	Sp18	 14	

Converting	Data	Types	in	C++	
Combining	Characters	with	Strings	

•  Consider	this	code	using	C++	Strings:	
string	msg1	=	"Hello",	msg2	=	"World";	
char	sp	=	'	';			//	space	character	
string	msg3	=	msg1	+	msg2;	
string	msg4	=	msg1	+	sp	+	msg2;	
string	msg4	=	msg1	+	sp	+	msg2[0];	
string	msg4	=	msg1[0]	+	sp	+	msg2[0];	

•  You	can	create	a	string	that	is	a	concatenation	of	strings	+	characters	
•  You	CANNOT	create	a	string	out	of	only	characters!	
–  Concatenation	is	just	for	strings		-	not	for	characters.	

5/8/18	 Matni,	CS16,	Sp18	 15	

Compiles!	

Also	Compiles!	

Also	Compiles!	

Does	NOT	Compile!	

ARRAYS	

5/8/18	 Matni,	CS16,	Sp18	 16	

Introduction	to	Arrays	

•  An	array	is	used	to	process	a	collection	of	data	of	the	
same	type	
– Examples:	 	A	list	of	people’s	last	names	
		 	 	 	 	A	list	of	numerical	measurements	

•  Why	do	we	need	arrays?	
– Imagine	keeping	track	of	1000	test	scores	in	memory!		
•  How	would	you	name	all	the	variables?	
•  How	would	you	process	each	of	the	variables?	

5/8/18	 Matni,	CS16,	Sp18	 17	

Declaring	an	Array	

int	score[5]; 	 		
//	Declares	an	array	of	ints	called	score	that	has	5	elements:	
//	score[0],	score[1],	score[2],	score[3],	score[4]	
	 	 		
	 	 	 	subscript	or	index	

•  Note	the	size	of	the	array	is	the	highest	index	value	+	1	
– Because	indexing	in	C++	starts	at	0,	not	1	
–  The	index	can	be	an	integer	data	type	variable	also	

5/8/18	 Matni,	CS16,	Sp18	 18	

Loops	And	Arrays	

•  for-loops	are	commonly	used	to	step	through	arrays		

Example:	
				int	max	=	9,	size	=	5;	
	 	for	(i	=	0;	i	<	size;	i++)			
	 	 	cout	<<	max	–	score[i]	<<	endl;	
							
displays	the	difference	between	each	score	and	the	
maximum	score	stored	in	an	array	

5/8/18	 Matni,	CS16,	Sp18	 19	

First
index is 0

Last index is (size – 1)

Declaring	An	Array	

•  When	you	declare	an	array,	you	MUST	declare	its	size	as	well!	
	

int	MyArray[5];	 		
//Array	declared	has	5	non-initialized	elements	
	
int	MyArray[]	=	{1,	2,	5,	7,	0};	
//	Array	declared	has	5	initialized	elements	
	
int	MyArray[5]	=	{1,	2,	5,	7,	0};	
//	This	is	ok	too!	

5/8/18	 Matni,	CS16,	Sp18	 20	

{ … } used for full-array initializations

Initializing	Arrays	

•  It’s	recommended	to	initialize	an	array	when	it	is	declared	
–  The	values	for	the	indexed	variables	are	enclosed	in	braces	and	separated	by	
commas	

•  Example:						int	children[3]	=	{2,	12,	1};	
Is	equivalent	to:	
							 	 					 	int	children[3];	
	 	 						children[0]	=	2;	
	 	 	 	 	children[1]	=	12;	
	 				 	 	children[2]	=	1;	

5/8/18	 Matni,	CS16,	Sp18	 21	

Constants	and	Arrays	

•  You	can	use	variables	as	indices	in	arrays,	BUT	NOT	to	declare	them!	
•  However,	you	can	use	constants	to	declare	size	of	an	array	

Example:	
const	int	NUMBER_OF_STUDENTS	=	50;	//	can	change	this	later	
int	score[NUMBER_OF_STUDENTS];	
	 	…	
for	(int	i	=	0;	i	<	NUMBER_OF_STUDENTS;		i++)	
	 	cout	<<	score[i]	<<	endl;	
	

•  To	make	this	code	work	for	any	number	of	students,		
	 	 	 	 	simply	change	the	value	of	the	constant	in	the	1st	line…	

5/8/18	 Matni,	CS16,	Sp18	 22	

5/8/18	 Matni,	CS16,	Sp18	 23	

When	reserving	memory	space	for	an	array	in	
C++,	the	compiler	needs	to	know	just	3	things:	
	
1.  A	starting	address	(location)	
2.  How	many	elements	in	array	
3.  What	data	type	the	array	elements	are	

If	the	compiler	needs	to	determine	
the	address	of	a[3],	for	example	

It	starts	at	a[0]	(it	knows	this	address!)	
It	counts	past	enough	memory	for	
three	integers	to	find	a[3]	

Array	Index	Out	of	Range	

•  A	common	error	by	programmers	is	using	a	nonexistent	index	
•  Index	values	for	int	a[6]		are	the	values	0	through	5	
•  An	index	value	that’s	not	allowed	by	the	array	declaration		
	 	 	 	 	 	 	is	called	out	of	range	

•  Using	an	out	of	range	index	value	does	not	always	produce	an	error	
message	by	the	compiler!!!	
–  It	produces	a	WARNING,	but	the	program	will	often	give	a	run-time	error	
–  So,	DON’T	rely	on	the	compiler	catching	your	mistakes!	Be	Proactive!	

5/8/18	 Matni,	CS16,	Sp18	 24	

Out	of	Range	Problems	

•  Let’s	say	we	have	the	following:					int	a[6],	i	=	7;	
•  Then	we	execute	the	statement: 	 	 	a[i]	=	238;		
•  This	causes…	
–  The	computer	to	calculate	the	address	of	the	illegal	a[7]	
–  This	address	could	be	where	some	other	variable	in	the	program	is	stored!	
–  The	value	238	will	be	stored	at	the	address	calculated	for	a[7]	

•  Congrats!	You’ve	now	messed	with	the	integrity	of	computer	memory!	
•  You	could	get	run-time	errors	OR	YOU	MIGHT	NOT!!!	(unpredictable)	
•  This	is	bad	practice!	Keep	track	of	your	arrays!	

5/8/18	 Matni,	CS16,	Sp18	 25	

See	demo	files:	
basic_arrays.cpp	

Default	Values	

•  If	too	few	values	are	listed	in	an	initialization	statement	
–  The	listed	values	are	used	to	initialize	the	first	of	the	indexed	variables	
–  The	remaining	indexed	variables	are	initialized	to	a	zero	of	the	base	type	

•  Example:				int	a[10]	=	{5,	5};		//	Note	array	size	given	
				 	 	 	 	initializes	a[0]	and	a[1]	to	5		
	 	 					 	 	 				and	a[2]	through	a[9]	to	0	

NOTE:		
This	is	called	an	extended	initializer	list	and	it	only	works	in	the	latest	
versions	of	C++	compilers	(version	11	or	later).	
5/8/18	 Matni,	CS16,	Sp18	 26	

Range-Based	For	Loops	
•  C++11	(and	later)	includes	a	new	type	of	for	loop:		
The	range-based	for-loop	simplifies	iteration	over	every	element	in	an	array.		

•  For	example,	the	following	code	outputs:	2	4	6	8	

	int	arr[]	=	{2,	4,	6,	8};	
	for	(int	x	:	arr)		
	{	
	 	 	cout	<<	x	<<	“	”;	
	}	

5/8/18	 Matni,	CS16,	Sp18	 27	

Arrays	in	Functions	
•  Indexed	variables	can	be	arguments	to	functions	
•  Example:				If	a	program	contains	these	declarations:		

	 	 	void	my_function(int	x);	
	 	 	 	...	
	 	 	int	i,	n,	a[10];	

	
Variables	a[0]	through	a[9]	are	of	type	int,	so	making	these	calls	IS	legal:	
								 	my_function(a[0]);	
	 	my_function(a[3]);	
	 	my_function(a[i]);														

	
BUT!	This	call	is	NOT	legal:	
	 	 	my_function(a[]);	 	or	 	 	my_function(a);	

5/8/18	 Matni,	CS16,	Sp18	 28	

Arrays	as	Function	Arguments	

•  You	can	make	an	entire	array	a	formal	parameter	for	a	function	
–  That	is,	as	an	input	to	a	function	
	

•  But	you	cannot	make	an	entire	array	the	RETURNED	value	for	a	function	
–  That	is,	as	an	output	from	a	function	

•  An	array	parameter	behaves	much	like	a	call-by-reference	parameter	

5/8/18	 Matni,	CS16,	Sp18	 29	

Passing	an	Array	into	a	Function	

•  An	array	parameter	is	indicated	using	empty	brackets	in	the	
parameter	list	such	as	
	
			void	fill_up(int	a[],	int	size);	

5/8/18	 Matni,	CS16,	Sp18	 30	

Function	Calls	With	Arrays	
•  If	function	fill_up	is	declared	in	this	way		 	(note:	uses	[]	!!!)	

							void	fill_up(int	a[],	int	size);	
	

•  	 and	array	score	is	declared	this	way:	
							int	score[5],	number_of_scores	=	5;	
	

•  	 fill_up	is	called	in	this	way	 	 	 	 	 	 	 	(note:	no	[]	!!!)	
	 	fill_up(score,	number_of_scores);	

•  Note	that	the	array	values	can	be	changed	by	the	function	
–  Even	though	it	“looks	like”	it’s	being	passed-by-value	–	it’s	actually	being		
passed-by-reference.	We’ll	discuss	this	more	with	“pointers”	another	time…	

5/8/18	 Matni,	CS16,	Sp18	 31	

5/8/18	 Matni,	CS16,	Sp18	 32	

Array	Argument	Details	

•  Recall:	What	does	the	computer	know	about	an	array?	
– The	base	type		
– The	address	of	the	first	indexed	variable	
– The	number	of	indexed	variables	

•  What	does	a	function	need	know	about	an	array	argument?	
– The	base	type	
– The	address	of	the	first	indexed	variable	

5/8/18	 Matni,	CS16,	Sp18	 33	

Array	Parameter	Considerations	

•  Because	a	function	does	not	know	the	size	of	an	array	
argument…	
– The	programmer	should	include	a	formal	parameter	that	specifies	
the	size	of	the	array	

– The	function	can	process	arrays	of	various	sizes	
•  Example:	function	fill_up	from	on	pg.	392	of	the	textbook	can	be	used	to	fill	
an	array	of	any	size:	
		
	fill_up(score,	5);	
		fill_up(time,	10);	

5/8/18	 Matni,	CS16,	Sp18	 34	

But…		
IS	there	a	way	to	CALCULATE	the	Size	of	an	Array?	
•  Yes,	there	is…	but	not	with	regular	arrays	
•  You	will	want	to	use	“dynamic	arrays”	
– We’ll	talk	about	those	later	on	with	“pointers”	

	
•  For	now,	get	used	to	the	idea	of	passing	the	size	of	an	array	
into	a	function	that	has	the	array	as	argument.	

5/8/18	 Matni,	CS16,	Sp18	 35	

const	Modifier	
•  Array	parameters	allow		

	 	 	 	 	a	function	to	change	the	values	stored	in	the	array	arg.	
–  Similar	to	how	a	parameter	being	passed	by	reference	would	be	

•  If	you	want	a	function	to	not	change	the	values	of	the	array	argument,	use	the	
modifier	const	

•  An	array	param.	modified	w/	const	is	called	a	constant	array	parameter	
–  Example:				
							void	show_the_world(const	int	a[],	int	size);	

•  If	const	is	used	to	modify	an	array	parameter:	
it	has	to	be	used	in	both	the	function	declaration	and	definition	

5/8/18	 Matni,	CS16,	Sp18	 36	

See	demo	files:	
array_function.cpp	

Returning	An	Array	

•  Recall	that	functions	can	return	a	value	of	type	int,	double,	
char,	…,	or	even	a	class	type	(like	string)	

•  BUT	functions	cannot	return	arrays	
	

•  We’ll	learn	later	how	to	return	a	pointer	to	an	array	instead…	

5/8/18	 Matni,	CS16,	Sp18	 37	

YOUR	TO-DOs	

q Begin	Lab6	on	Wednesday	
q Do	HW10	by	next	Thursday	

q Visit	Prof’s	and	TAs‘	office	hours	if	you	need	help!	

q Practice	all	your	skills	

5/8/18	 Matni,	CS16,	Sp18	 38	

5/8/18	 Matni,	CS16,	Sp18	 39	

