
File	I/O	

CS	16:	Solving	Problems	with	Computers	I	
Lecture	#9	

	
Ziad	Matni	

Dept.	of	Computer	Science,	UCSB	



Lecture	Outline	

•  I/O	Data	Streams	and	File	I/O	

•  An	introduction	to	Objects	and	Member	Functions	

•  Handling	File	I/O	Errors	

5/3/18	 Matni,	CS16,	Sp18	 2	



File	I/O	

•  Read	(input)	from	a	file	
– Usually	done	from	beginning	to	the	end	of	file	(not	always)	

•  No	backing	up	to	read	something	again	(but	you	can	start	over)	
•  Similar	to	how	it’s	done	from	the	keyboard	

•  Write	(output)	to	a	file	
– Usually	done	from	beginning	to	end	of	file	(not	always)	

•  No	backing	up	to	write	something	again	(but	you	can	start	over)	
•  Similar	to	how	it’s	done	to	the	screen	

5/3/18	 Matni,	CS16,	Sp18	 3	

Input	
Data	File	

Your	C++	
Program	

Output	
Data	File	



Stream	Variables	for	File	I/O	

You	have	to	use	“stream	variables”	for	file	I/O	and	they…	

•  Must	be	declared	before	you	can	use	file	I/O	

•  Must	be	initialized	before	the	files	can	contain	valid	data	
–  Initializing	a	stream	means	connecting	it	to	a	file	
–  The	value	of	the	stream	variable	is	really	the	filename	it	is	connected	to	

•  Can	have	their	values	changed	
–  Changing	a	stream	value	means		

	 	 	 	disconnecting	from	one	file	and	then	connecting	to	another	

5/3/18	 Matni,	CS16,	Sp18	 4	

Input	
Data	File	

Your	C++	
Program	

Output	
Data	File	



Streams	and	Assignment		

•  Streams	use	special	built-in	(member)	functions	
instead	of	the	assignment	operator	to	change	values	

•  Example:	
streamObjectX.open(“MyBook.txt”);	 	//	connects	to	file	
streamObjectX.close();	 	 	 	 	 	//	closes	connection	to	file	

5/3/18	 Matni,	CS16,	Sp18	 5	



Declaring	An	Input-File	Stream	Variable	

•  Input-file	streams	are	of	type	ifstream	

•  Type	ifstream	is	defined	in	the	fstream	library	
•  You	must	use	the	appropriate	include	statement	and	using	directives	

	 	 	 	#include	<fstream>	
	 	 	 	using	namespace	std;	

•  Declare	an	input-file	stream	variable	with:	
								 	ifstream	input_stream;	
	

5/3/18	 Matni,	CS16,	Sp18	 6	

Variable	type	 Variable	name	



Declaring	An	Output-File	Stream	Variable	

•  Output-file	streams	of	are	type	ofstream	

•  Type	ofstream	is	defined	in	the	fstream	library	
•  Again,	you	must	use	the	include	and	using	directives	
																					 	#include	<fstream>	
										 	using	namespace	std;	
	

•  Declare	an	output-file	stream	variable	using		
		 	 	 	 	ofstream	output_stream;	

Variable	type	 Variable	name	

5/3/18	 Matni,	CS16,	Sp18	 7	



Connecting	To	A	File	

•  Once	a	stream	variable	is	declared,		
	 	 	 	 	 	 	 	 	you	can	connect	it	to	a	file	
– Connecting	a	stream	to	a	file	means	“opening”	the	file	
– Use	the	open	member	function	of	the	stream	object	
																											
														input_stream.open("infile.dat");	

Period 
Member function syntax File name on the disk 

Must include a true path (relative or absolute) 

Double quotes 

Input	
Data	File	

Your	C++	
Program	

Output	
Data	File	

5/3/18	



Using	The	Input	Stream	
•  Once	connected	to	a	file,	get	input	from	the	file	using	the	extraction	operator	(>>)	

–  Just	like	with	cin	

Example:	
	ifstream	in_stream;	
	in_stream.open(“infile.dat”);		

	int	one_number,	another_number;	

	

	in_stream	>>	one_number	>>	another_number;	

	

	in_stream.close();		

	5/3/18	 Matni,	CS16,	Sp18	 9	

The	inputs	are	read	from	the	
infile.dat	file	

separated	by	either	spaces	or	
newline	characters.	

The	input	values	are	placed	in	
the	variables	one_number	

and	another_number	



Using	The	Output	Stream	

•  An	output-stream	works	similarly	using	the	insertion	operator	(<<)	
–  Just	like	with	cout	

Example:		
ofstream	out_stream;		
out_stream.open(“outfile.dat”);		
	
out_stream	<<	“one	number	=	”	<<	num1		
	 	 	<<	“,	another	number	=	”	<<	num2;		

		

out_stream.close();		
5/3/18	 Matni,	CS16,	Sp18	 10	

The	output	gets	written	in	
the	outfile.dat	file		

(as	opposed	to		
the	standard	output!)	



Closing	a	File	
•  After	using	a	file,	it	should	be	closed	using	the	.close()	function	

–  This	disconnects	the	stream	from	the	file	
–  Close	files	to	reduce	the	chance	of	a	file	being	corrupted		

	 	 	 	 	 	 	 	 	 	incase	the	program	terminates	abnormally	

•  Example:		 	 	in_stream.close();	

•  It	is	important	to	close	an	output		file	if	your		program	later	needs	to	read	
input	from	the	output	file	

•  The	system	will	automatically	close	files	if	you	forget	
	 	 	 	 	 	 	as	long	as	your	program	ends	normally!	
–  But	I	will	deduct	points	in	exams	and	assignments	if	you	forget	it!!	

5/3/18	 Matni,	CS16,	Sp18	 11	



Member	Functions	

Member	function:	function	associated	with	an	object	
•  .open()	is	a	member	function	of	in_stream	in	the	previous	examples	
–  in_stream	is	an	object	of	class	ifstream	

•  Likewise,	a	different	.open()	is	a	member	function	of	out_stream	in	the	
previous	examples	
–  Despite	having	the	same	name!	
–  out_stream	is	an	object	of	class	ofstream	

5/3/18	 Matni,	CS16,	Sp18	 12	

For	a	list	of	member	functions	for	I/O	stream	classes,	also	see:	
http://www.cplusplus.com/reference/fstream/ifstream/	
http://www.cplusplus.com/reference/fstream/ofstream/		



Classes	vs.	Objects	

•  A	class	is	a	complex	data	type	that	can	contain	variables	&	functions	
–  Example:	ifstream,			ofstream,			string				are	examples	of	C++	(built-in)	classes	

•  When	you	call	up	a	class	to	use	it	in	a	program,		
	 	 	 	 	 	 	 	 	 	 	 	you	instantiate	it	as	an	object	
–  Example:		
ifstream	MyInputStream;	//	MyInputStream	is	an	object	of	class	ifstream		

5/3/18	 Matni,	CS16,	Sp18	 13	



Calling	a	Member	Function	

•  Calling	a	member	function	requires	specifying	the	object	
containing	the	function	

•  The	calling	object	is	separated	from	the	member	function	by	
the	dot	operator	

•  Example:			in_stream.open("infile.dat");	

Calling object 

Dot operator 

Member function 

5/3/18	 14	Matni,	CS16,	Sp18	



Errors	On	Opening	Files	

•  Opening	a	file	can	fail	for	several	reasons	
– The	file	might	not	exist	
– The	name	might	be	typed	incorrectly	
– Other	reasons	
	

•  Caution:		
You	may	not	see	an	error	message	if	the	call	to	open	fails!!	
– Program	execution	usually	continues!	

5/3/18	 Matni,	CS16,	Sp18	 15	



Catching	Stream	Errors	

•  Member	function	fail(),	can	be	used	to	test	the	success	of	a	
stream	operation	

•  fail()	returns	a	Boolean	type		(True	or	False)	

•  fail()	returns	True	(1)	if	the	stream	operation	failed	

5/3/18	 Matni,	CS16,	Sp18	 16	



Halting	Execution	
•  When	a	stream	open	function	fails,	it	is	generally	best	to	stop	the	
program	then	and	there!	

•  The	function	exit(),	halts	a	program	
–  exit(n)	returns	its	argument	(n)	to	the	operating	system	
–  exit(n)	causes	program	execution	to	stop	
–  exit(n)	is	NOT	a	member	function!	It’s	a	function	defined	in	cstdlib	

•  Exit	requires	the	include	and	using	directives	
																 	#include	<cstdlib>	
									using	namespace	std;	

5/3/18	 Matni,	CS16,	Sp18	 17	



Using	fail	and	exit	

•  Immediately	following	the	call	to	open,		
	 	 	 	 	check	that	the	operation	was	successful:	
	
		in_stream.open("stuff.dat");	
	if(	in_stream.fail()	)	

		{			
			 	cerr	<<	"Input	file	opening	failed.\n";	//	Why	cerr??	
	 	exit(1);	 	//	Program	quits	right	here!	

		}	

5/3/18	 Matni,	CS16,	Sp18	 18	



Appending	Data	to	Output	Files	
•  Output	examples	we’ve	given	so	far	create	new	files	

–  If	the	output	file	that	you’ve	designated	already	contained	data		
and	you	try	to	write	to	it	again,	then	that	data	is	now	lost!	

•  To	append	(i.e.	add)	new	output	to	the	end	an	existing	file	use	the	constant		
ios::app	defined	in	the	iostream	library:		
									outStream.open("important.txt",	ios::app);	
–  If	the	file	does	not	exist,	a	new	file	will	be	created	

•  There	are	other	member	functions	that	return	the	location	in	the	I/O	file	where	
the	next	data	will	be	
–  Helps	with	customizing	read	and	writing	files	
–  To	be	used	carefully!	We	won’t	go	over	them	in	CS16…	

5/3/18	 Matni,	CS16,	Sp18	 19	



Entering	File	Names	for	I/O	Files	

•  Users	can	also	enter	the	name	of	a	file	to	be	read/written	
–  As	an	input	read	by	cin	

•  You	can	use	regular	C++	strings	for	the	filenames,	but	ONLY	if	you	
ensure	that	you	are	compiling	with	C++	version	11	(or	later).	

•  OTHERWISE,	you’ll	have	to	use	C-strings	
– WARNING!!!!	PAY	ATTENTION	TO	THIS!!!	
–  Textbook	has	details	on	how	to	use	C-strings	for	filenames	

5/3/18	 Matni,	CS16,	Sp18	 20	



Formatting	Output	to	Files	

•  Recall:	Format	output	to	the	screen	with:	
	 	cout.setf(ios::fixed);	
	 	cout.setf(ios::showpoint);	

	 	 	cout.precision(2);	
	

•  Similarly,	format	output	to	a	file	using	out_stream	with:	
	 	 	out_stream.setf(ios::fixed);	
	 	 	out_stream.setf(ios::showpoint);	
		 	 	out_stream.precision(2);	

5/3/18	 Matni,	CS16,	Sp18	 21	



Let’s	Look	at	a	Demo…	

5/3/18	 Matni,	CS16,	Sp18	 22	

RWDemo.cpp	
	

Found	in	your	demo	folder	under	demo_lect09	



Can	I	Call	a	Function	to	do	File	I/O?	

•  Yes!	

•  But	there	are	strict	rules	about	it:	
– Mainly:	stream	objects	must	be	passed	by	reference	into	functions	

5/3/18	 Matni,	CS16,	Sp18	 23	



Stream	Names	as	Arguments	

•  Streams	can	be	arguments	to	a	function	
– The	function's	formal	parameter	for	the	stream		
	 	 	 	 	must	be	call-by-reference		
	

•  Example:				
	 	void	make_neat(ifstream&	messy_file,		
	 	 	 				 				 				ofstream&	neat_file);	

	

5/3/18	 Matni,	CS16,	Sp18	 24	



Detecting	the	End	of	a	File	

•  Input	files	used	by	a	program	may	vary	in	length	
– Programs	may	not	be	able	to	correctly	assume	the	number	
of	items	or	lines	in	the	file	
– You	may	not	know	either!	

•  C++	provides	2	methods	that	can	tell	you	if	you	have	
reached	the	end	of	a	file	that	you	are	reading	

5/3/18	 Matni,	CS16,	Sp18	 25	



Detecting	the	End	of	a	File	
•  The	Boolean	expression	(in_stream.eof(	))	
– Utilizes	the	member	function	eof()		…	or	end-of-file	
–  True	if	you	have	reached	the	end	of	file	
–  False	if	you	have	not	reached	the	end	of	file	

•  The	Boolean	expression	(in_stream	>>	next)	
– Does	2	things:		
*	Reads	a	value	from	in_stream	and	stores	it	in	variable	next	
*	Returns	a	Boolean	value	

–  True	if	a	value	can	be	read	and	stored	in	next	
–  False	if	there	is	not	a	value	to	be	read	(i.e.	b/c	of	the	end	of	the	file)	

5/3/18	 Matni,	CS16,	Sp18	 26	



End	of	File	Example	
using	while	(ifstream	>>	next)	method	

•  To	calculate	the	average	of	the	numbers	in	a	file	that	contains	numbers	of	
type	double:	

	 	ifstream	in_stream;	
		 	in_stream.open(“inputfile.txt”)	
	
	 	double	next,	sum(0),	average;	
		 	int	count	=	0;	
	
	 	while(in_stream	>>	next)		
	 	{	
	 	 	sum	=	sum	+	next;	
		 	 	count++;	
		 	}	
	 	average	=	sum	/	count;	

5/3/18	 Matni,	CS16,	Sp18	 27	



End	of	File	Example	
using	while	(	!ifstrem.eof()	)	method	

•  To	read	each	character	in	a	file,		
	 	 	 	 	 	 	and	then	write	it	to	the	screen:	

	 	in_stream.get(next);	
	 	while	(!	in_stream.eof(	)	)		
	 	{	
		 	 	 	cout	<<	next;	
		 	 	 	in_stream.get(next);	
		 	}	

5/3/18	 Matni,	CS16,	Sp18	 28	

More	
on	.get()	later	



Which	of	the	2	Should	I	Use?!	

In	general:	

•  Use	eof	when	input	is	treated	as	text		
	 	 	 	and	using	a	member	function	.get	to	read	input	

•  Use	the	extraction	operator	(>>)	method		

	 	 	 	when	input	is	numerical	data	

5/3/18	 Matni,	CS16,	Sp18	 29	



Member	Function	get(char)	
•  Member	function	of	every	input	stream	
–  i.e.	it	works	for	cin	and	for	ifstream	

•  Reads	one	character	from	an	input	stream	

•  Stores	the	character	read	in	a	variable	of	type	char,	which	is	the	
single	argument	the	function	takes	

•  Does	not	use	the	extraction	operator	(>>)		
•  Does	not	skip	whitespaces,	like	blanks,	tabs,	new	lines	
–  Because	these	are	characters	too!	

5/3/18	 Matni,	CS16,	Sp18	 30	

See	demo	file:	
changeCtoCPP.cpp	



Using	get	

•  These	lines	use	get	to	read	a	character	and	store	it	in	the	variable	
next_symbol	
	
	 	char	next_symbol;	
	 	cin.get(next_symbol);	
	

•  Any	character	will	be	read	with	these	statements	
– Blank	spaces	too!	
– ‘\n’	too!		(The	newline	character)	
– ‘\t’	too!	(The	tab	character)	

5/3/18	 Matni,	CS16,	Sp18	 31	



get	Syntax	

input_stream_object.get(char_variable);	
	
•  Examples:			 		
	 	 	char		next_symbol;	
	 	 	cin.get(next_symbol);	

	
	 	 	ifstream		in_stream;	
	 	 	in_stream.open("infile.txt");	
	 	 	in_stream.get(next_symbol);	

5/3/18	 Matni,	CS16,	Sp18	 32	

See	demo	file:	
get_example.cpp	



More	About	get	

•  Given	this	code: 	 	 	 	 	 	 	and	this	input:	

•  Results:	in	c1	=	'A'		 	 		

•  On	the	other	hand:	 	cin	>>	c1	>>	c2	>>	c3;				
						would	place	'C'	in	c3	because	">>"	operator	skips	newline	characters	

c3	=	'\n'	c2	=	'B'		

char	c1,	c2,	c3;	
cin.get(c1);	
cin.get(c2);	
cin.get(c3);	

AB	
CD	

5/3/18	 Matni,	CS16,	Sp18	 33	

Note	the	
newline	after	B	



The	End	of	The	Line	using	get	
•  To	read	and	echo	an	entire	line	of	input	by	collecting	all	characters	before	
the	newline	character	

•  	Look	for	'\n'	at	the	end	of	the	input	line:	
								 	cout	<<"Enter	a	line	of	input	and	I	will	echo	it.\n";	
							char	symbol;	
							do		
	 	 	{	
								 	cin.get(symbol);	
	 	 		 	cout	<<	symbol;	
	 				}	while	(symbol	!=	'\n');	

•  All	characters,	including	'\n'	will	be	output	
5/3/18	 Matni,	CS16,	Sp18	 34	



getline	function	

•  For	standard	inputs,	cin	is	fine:	but	it	ignores	space,	tabs,	and	newlines	

•  Sometimes,	you	want	to	get	the	entire	line	of	data!	

•  Best	to	use	the	function	getline	for	that	purpose.	

•  You	have	to	include	the	<iostream>	library	(which	you	likely	already	do!)	
•  Popular	Usage:		

	 	 	 	 	getline(ifstream_object,	string);	
	 	 	 	 	getline(cin,	string);	

5/3/18	 Matni,	CS16,	Sp18	 35	

See	demo	file:	
getline_example.cpp	



YOUR	TO-DOs	

q Finish	Lab5	by	Monday	
q Do	HW9	by	next	Tuesday	

q Visit	Prof’s	and	TAs‘	office	hours	if	you	need	help!	

q Remember	it	takes	fewer	muscles	to	smile	than	to	frown!	

5/3/18	 Matni,	CS16,	Sp18	 36	



5/3/18	 Matni,	CS16,	Sp18	 37	


