File I/O

CS 16: Solving Problems with Computers |
Lecture #9

Ziad Matni
Dept. of Computer Science, UCSB

Lecture Outline

* 1/O Data Streams and File 1/0O

* An introduction to Objects and Member Functions

* Handling File I/O Errors

5/3/18 Matni, CS16, Sp18

. Input Your C++ Output
FI |e I O Data File Program Data File

e Read (input) from a file

— Usually done from beginning to the end of file (not always)
* No backing up to read something again (but you can start over)
* Similar to how it’s done from the keyboard

e Write (output) to a file

— Usually done from beginning to end of file (not always)
* No backing up to write something again (but you can start over)
 Similar to how it’s done to the screen

5/3/18 Matni, CS16, Sp18

Input Your C++ Output

Stream Variables for File I/O | program Rali A

You have to use “stream variables” for file /0 and they...

* Must be declared before you can use file I/O

* Must be initialized before the files can contain valid data
— Initializing a stream means
— The value of the stream variable is really the filename it is connected to

e Can have their values changed

— Changing a stream value means
disconnecting from one file and then connecting to another

5/3/18 Matni, CS16, Sp18

Streams and Assignment

e Streams use special built-in (member) functions
instead of the assignment operator to change values

e Example:

streamObjectX. // connects to file
streamObjectX. // closes connection to file

5/3/18 Matni, CS16, Sp18

Declaring An Input-File Stream Variable

Input-file streams are of type ifstream

Type ifstream is defined in the fstream library

You must use the appropriate include statement and using directives

#include <fstream>
using namespace std;

Declare an input-file stream variable with:
ifstream input_stream;

5/3/18 Matni, CS16, Sp18

Declaring An Stream Variable

Output-file streams of are type

Type is defined in the fstream library

Again, you must use the include and using directives

#include <fstream>
using namespace std;

Declare an output-file stream variable using
ofstream output_stream;

5/3/18 Matni, CS16, Sp18

Connecting To A File pata il Data Fi

* Once a stream variable is declared,
you can connect it to a file

— Connecting a stream to a file means “opening” the file
— Use the open member function of the stream object

input_stream.open("infile.dat"); I
\ Double quotes

5/3/18

Using The Input Stream

* Once connected to a file, get input from the file using the extraction operator (>>)

— Just like with cin

Example:
ifstream in_stream;
in_stream.open(“infile.dat”);

int one_number, another_number;

in_stream >> one_number >> another_number;

in_stream.close();

5/3/18 Matni, CS16, Sp18

The inputs are read from the
infile.dat file
separated by either spaces or
newline characters.

The input values are placed in
the variables one_number
and another_number

DEMO!

simpleRead.cpp

Using The Output Stream

* An output-stream works similarly using the insertion operator (<<)

— Just like with cout

Example: The output gets written in

ofstream out_stream; the outfile.dat file
(as opposed to

out_stream.open(“outfile.dat”);
the standard output!)

out_stream << “one number = ” << numl
<< “, another number = ” << num2;

DEMO!

out_stream.close(); simpleWrite.cpp

5/3/18 Matni, CS16, Sp18

Closing a File

After using a file, it should be closed using the .close() function
— This disconnects the stream from the file

— Close files to reduce the chance of a file being corrupted
incase the program terminates abnormally

Example: in_stream.close();

It is important to close an output file if your program later needs to read
input from the output file

The system will automatically close files if you forget
as long as your program ends normally!
— But I will deduct points in exams and assignments if you forget it!!

5/3/18 Matni, CS16, Sp18

Member Functions

function associated with an object

e .open()is a member function of in the previous examples
is an object of class

* Likewise, a different .open() is a member function of
previous examples

— Despite having the same name!
is an object of class

For a list of member functions for |/O stream classes, also see:

5/3/18 Matni, CS16, Sp18

Classes vs. Objects

e Aclassis a that can contain variables & functions

— Example: ifstream, ofstream, string are examples of C++ (built-in) classes

* When you call up a class to use it in a program,
you instantiate it as an object

— Example:
ifstream MyInputStream; // MyInputStream is an object of class ifstream

5/3/18 Matni, CS16, Sp18

Calling a Member Function

* Calling a member function requires specifying the object
containing the function

* The calling object is separated from the member function by

the
Dot operator

/

* Example: in_stream’open("infile.dat");

ember function
Calling object

5/3/18 Matni, CS16, Sp18

Errors On Opening Files

* Opening a file can fail for several reasons
— The file might not exist
— The name might be typed incorrectly
— Other reasons

* Caution:
You may not see an error message if the call to open fails!!

— Program execution usually continues!

5/3/18 Matni, CS16, Sp18

Catching Stream Errors

 Member function fail(), can be used to test the success of a
stream operation

* fail() returns a Boolean type (True or False)

* fail() returns True (1) if the stream operation failed

5/3/18 Matni, CS16, Sp18

Halting Execution

* When a stream open function fails, it is generally best to stop the
program then and there!

e The function exit(), halts a program
— exit(n) returns its argument (n) to the operating system
— exit(n) causes program execution to stop
— exit(n) is NOT a member function! It’s a function defined in cstdlib

e Exit requires the include and using directives

#include <cstdlib>
using namespace std;

5/3/18 Matni, CS16, Sp18

Using fail and exit

* Immediately following the call to open,
check that the operation was successful:

in_stream.open("stuff.dat");
if(in_stream.fail())
{

cerr << "Input file opening failed.\n"; // Why cerr??
exit(1l); // Program quits right here!

DEMO!

RWDemo.cpp

5/3/18 Matni, CS16, Sp18

Appending Data to Output Files

Output examples we’ve given so far create new files

— If the output file that you’ve designated already contained data
and you try to write to it again, then that data is now lost!

To append (i.e. add) new output to the end an existing file use the constant
ios::app defined in the iostream library:
outStream.open("important.txt", ios::app);

— If the file does not exist, a new file will be created

There are other member functions that return the location in the 1/O file where
the next data will be

— Helps with customizing read and writing files

— To be used carefully! We won’t go over them in CS16...

5/3/18 Matni, CS16, Sp18

Entering File Names for I/O Files

e Users can also enter the name of a file to be read/written
— As an input read by cin

* You can use regular C++ strings for the filenames, but ONLY if you
ensure that you are compiling with C++ version 11 (or later).

e OTHERWISE, you’ll have to use C-strings
— WARNING!!!! PAY ATTENTION TO THIS!!!
— Textbook has details on how to use C-strings for filenames

5/3/18 Matni, CS16, Sp18

Formatting Output to Files

e Recall: Format output to the screen with:
.setf(ios::fixed);
.setf(ios::showpoint);

.precision(2);

* Similarly, format output to a file using out_stream with:
out_stream.setf(ios::fixed);
out_stream.setf(ios::showpoint);
out_stream.precision(2);

5/3/18 Matni, CS16, Sp18

Let’s Look at a Demo...

RWDemo.cpp

Found in your demo folder under demo_lect09

5/3/18 Matni, CS16, Sp18

Can | Call a Function to do File I/O?

 Yes!

* But there are strict rules about it:
— Mainly: stream objects must be passed by reference into functions

5/3/18 Matni, CS16, Sp18

Stream Names as Arguments

e Streams can be arguments to a function

—The function's formal parameter for the stream
must be call-by-reference

* Example:

void make neat(ifstream& messy file,
ofstream& neat file);

5/3/18 Matni, CS16, Sp18

Detecting the End of a File

* Input files used by a program may vary in length

— Programs may not be able to correctly assume the number
of items or lines in the file

—You may not know either!

e C++ provides 2 methods that can tell you if you have
reached the end of a file that you are reading

5/3/18 Matni, CS16, Sp18

Detecting the End of a File

* The Boolean expression (in_stream.eof())
— Utilizes the member function eof() ... or end-of-file
— True if you have reached the end of file
— False if you have not reached the end of file

* The Boolean expression (in_stream >> next)

— Does 2 things:
* Reads a value from in_stream and stores it in variable next
* Returns a Boolean value

— True if a value can be read and stored in next
— False if there is not a value to be read (i.e. b/c of the end of the file)

5/3/18 Matni, CS16, Sp18

End of File Example

using while (ifstream >> next) method

* To calculate the average of the numbers in a file that contains numbers of
type double:

in_stream;
in_stream.open(“inputfile.txt”)

next, sum(©), average;
count = 0;

while(in_stream >> next)

{

sum = sum + next;
count++;

}

average = sum / count;

5/3/18 Matni, CS16, Sp18

End of File Example
using method

 To read each character in a file,
and then write it to the screen:

i —

in_stream.get(next);

cout << next;
in_stream.get(next);

5/3/18 Matni, CS16, Sp18

Which of the 2 Should | Use?!

In general:

* Use eof when input is treated as text

and using a member function .get to read input

* Use the extraction operator (>>) method

5/3/18 Matni, CS16, Sp18

Member Function get(char)

Member function of every input stream See demo file:
— i.e. it works for cin and for ifstream changeCtoCPP.cpp

Reads one character from an input stream

Stores the character read in a variable of type char, which is the
single argument the function takes

Does not use the extraction operator (>>)

Does not skip whitespaces, like blanks, tabs, new lines
— Because these are characters too!

5/3/18 Matni, CS16, Sp18

Using get

* These lines use get to read a character and store it in the variable
next_symbol

char next_symbol;
cin.get(next _symbol);

* Any character will be read with these statements
— Blank spaces too!
— \n’ too! (The newline character)
— \t’ too! (The tab character)

5/3/18 Matni, CS16, Sp18

get Syntax

input_stream_object.get(char_variable);

* Examples:

5/3/18

char next_symbol;
cin.get(next_symbol);

ifstream 1in_stream;

in_stream.open(" ")
in_stream.get(next_symbol);

Matni, CS16, Sp18

See demo file:
get_example.cpp

More About get

* Given this code: and this input: AB «_ Note the
CD newline after B

e Results:incl='A'" c2='B' c3="\n'

* Onthe other hand: cin >> cl1 >> c2 >> c3;

would place 'C' in c3 because ">>" operator skips newline characters

5/3/18 Matni, CS16, Sp18

The End of The Line using get

* Toread and echo an entire line of input by collecting all characters before
the newline character

* Look for '\n' at the end of the input line:

cout <<"Enter a line of input and I will echo it.\n";

char symbol;
do

{

cin.get(symbol);
cout << symbol;
} while (symbol != '\n');

 All characters, including '"\n' will be output

5/3/18 Matni, CS16, Sp18

getline function See demo file:

getline_example.cpp

For standard inputs, cin is fine: but it ignores space, tabs, and newlines
Sometimes, you want to get the entire line of data!
Best to use the function getline for that purpose.

You have to include the <iostream> library (which you likely already do!)

Popular Usage:

getline(ifstream object, string);
getline(cin, string);

5/3/18 Matni, CS16, Sp18

YOUR TO-DOs

 Finish Lab5 by Monday
(1 Do HW9 by next Tuesday

 Visit Prof’s and TAs‘ office hours if you need help!

J Remember it takes fewer muscles to smile than to frown!

5/3/18 Matni, CS16, Sp18

</LECTURE>

