
Numerical	Conversions	
Strings	in	C++	

CS	16:	Solving	Problems	with	Computers	I	
Lecture	#8	

	
Ziad	Matni	

Dept.	of	Computer	Science,	UCSB	

5/1/18	 Matni,	CS16,	Sp18	 2	

9	

3	
5	

10	

16	
17	

28	

15	

5	

Grade	Distribution	for	Midterm	#1	
CS	16,	Spring	18	(Matni)	

AVERAGE	(MEAN)	=	84.5%										MEDIAN	=	87%	

Lecture	Outline	

•  Numerical	Conversions	
– Binary,	Octal,	Hexadecimal	

•  Strings	
– C	Strings	vs.	C++	Strings	

5/1/18	 Matni,	CS16,	Sp18	 3	

Counting	Numbers	in	Different	Bases	
•  We	“normally”	count	in	10s	

–  Base	10:	decimal	numbers	
–  Number	symbols	are	0	thru	9	

•  Computers	count	in	2s	
–  Base	2:	binary	numbers	
–  Number	symbols	are	0	and	1	
–  Represented	with	1	bit	(21	=	2)	

•  Other	convenient	bases	in		
computer	architecture:	
–  Base	8:	octal	numbers	
–  Number	symbols	are	0	thru	7		
–  Represented	with	3	bits	(23	=	8)	

–  Base	16:	hexadecimal	numbers	
–  Number	symbols	are	0	thru	F	

•  A	=	10,	B	=	11,	C	=	12,	D	=	13,	E	=	14,	F	=	15	
–  Represented	with	4	bits	(24	=	16)	
–  Why	are	4	bit	representations	
convenient???	

5/1/18	 Matni,	CS16,	Sp18	 4	

Positional	Notation	in	Decimal	
a.k.a.:	How	I	Learned	Numbers	in	3rd	Grade…	

5/1/18	 Matni,	CS16,	Sp18	 5	

642 is: 6 hundreds, 4 tens, and 2 units
It’s a number in base 10 (aka decimal)

We can write it in positional notation:

 = 6 x 100 = 600

 = 4 x 10 = + 40
 = 2 x 1 = + 2 = 642 in base 10

6	x	102		
+	4	x	101			
+	2	x	100		

What	if	“642”	is	expressed	in	the	base	of	13?	
	

				
	 					

	
	
	

	
So,	“642”	in	base	13	is	equivalent	to		

“1068”	in	base	10	

 6 x 132 = 6 x 169 = 1014
 + 4 x 131 = 4 x 13 = 52
 + 2 x 13º = 2 x 1 = 2

 = 1068 in base 10

Positional	Notation	
Anything	àà	DEC	

5/1/18	 Matni,	CS16,	Sp18	 6	

5/1/18	 Matni,	CS16,	Sp18	 7	

2	
5/1/18	 Matni,	CS16,	Sp18	 8	

Positional	Notation	in	Binary	

5/1/18	 Matni,	CS16,	Sp18	 9	

11011 in base 2 positional notation is:

 1 x 24 = 1 x 16 = 16
 + 1 x 23 = 1 x 8 = 8
 + 0 x 22 = 0 x 4 = 0
 + 1 x 21 = 1 x 2 = 2
 + 1 x 20 = 1 x 1 = 1

So, 1011 in base 2 is 16 + 8 + 0 + 2 + 1 = 27 in base 10

Q:	What	is	the	decimal	equivalent	of	the	binary	number	1101100?	
A:	Look	for	the	position	of	the	digits	in	the	number.		
				This	one	has	7	digits,	therefore	positions	0	thru	6	

Converting	Binary	to	Decimal	

5/1/18	 Matni,	CS16,	Sp18	 10	

 1 x 26 = 1 x 64 = 64
 + 1 x 25 = 1 x 32 = 32
 + 0 x 24 = 0 x 16 = 0
 + 1 x 23 = 1 x 8 = 8
 + 1 x 22 = 1 x 4 = 4

 + 0 x 21 = 0 x 2 = 0
 + 0 x 2º = 0 x 1 = 0

 = 108 in base 10

1	 1	 0	 1	 1	 0	 0	
64	 32	 16	 8	 4	 2	 1	

26	 25	 24	 23	 22	 21	 20	

Other	Relevant	Bases	

•  I	n	Computer	Science/Engineering,	other	binary-related	
numerical	bases	are	used	too.	

•  OCTAL:	Base	8	 	 	 	 	(note	that	8	is	23)	
– Uses	the	symbols:	0,	1,	2,	3,	4,	5,	6,	7	

•  HEXADECIMAL:	Base	16 	(note	that	16	is	24)	
– Uses	the	symbols:	0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	A,	B,	C,	D,	E,	F	

5/1/18	 Matni,	CS16,	Sp18	 11	

Converting	Binary	to	Octal	and	Hexadecimal	
(or	any	base	that’s	a	power	of	2)	

•  Binary	is	 	 	 	1	bit	
•  Octal	is		 	 	 	3	bits			(23	=	8)			octal	is	base	8	
•  Hexadecimal	is		4	bits			(24	=	16)	hex	is	base	16	

•  Use	the	“group	the	bits”	technique	
– Always	start	from	the	least	significant	digit	
– Group	every	3	bits	together	for	bin	à	oct	
– Group	every	4	bits	together	for	bin	à	hex	

5/1/18	 Matni,	CS16,	Sp18	 12	

Converting	Binary		
to	Octal	and	Hexadecimal	

•  Take	the	example:	10100110	
…to	octal:	

							1	0	1	0	0	1	1	0	
	
…to	hexadecimal:	

							1	0	1	0	0	1	1	0	
	

5/1/18	 Matni,	CS16,	Sp18	 13	

2	 4	 6	

10	 6	

246	in	octal	

A6	in	hexadecimal	

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

A	

B	

C	

D	

E	

F	

Octal	
symbols	

Hex.	
symbols	

Decimal	
symbols	

While (the quotient is not zero)
1.  Divide the decimal number by the new base
2.  Make the remainder the next digit to the left in the answer
3.  Replace the original decimal number with the quotient
4.  Repeat until your quotient is zero

Algorithm	for	converting	number	in	base	10	to	other	bases	

Converting	Decimal	to	Other	Bases	

5/1/18	 Matni,	CS16,	Sp18	 14	

EXAMPLE:		
Convert	the	decimal	(base	10)	number	79	into	hexadecimal	(base	16)	
	
79	/	16	=	4	R	15					(15	in	hex	is	the	symbol	“F”)	
		4	/	16	=	0	R	4	

The	answer	is:	4F	

Converting	Decimal	into	Binary	
Convert	54	(base	10)	into	binary	and	hex:	
•  54	/	2	=	27	R	0	
•  27	/	2	=	13	R	1	
•  13	/	2	=	6	R	1	
•  6	/	2	=	3	R	0	
•  3	/	2	=	1	R	1	
•  1	/	2	=	0	R	1	

54	(decimal)	=																		(binary)	
									=	36	(hex)	

5/1/18	 Matni,	CS16,	Sp18	 15	

Sanity	check:	
110110	
=	2	+	4	+	16	+	32	
=	54	

0	1	1	0	1	1	

5/1/18	 Matni,	CS16,	Sp18	 16	

What	is	a	String?	

•  Characters	connected	together	in	a	sequence	

5/1/18	 Matni,	CS16,	Sp18	 17	

H i M o m !

P i k a c h u

Strings	in	C/C++	

•  Recall:	C++	is	based	on	C	
•  Originally	(in	C),	strings	were	defined	as	an	“array	of	characters”	

–  Called	C-Strings	and	are	“legacy”	data	types	in	C++	
–  Came	with	the	library	<cstring>	
–  Contains	lots	of	built-in	functions	that	go	with	C-Strings	

•  In	C++,	we	got	a	new	library:	<string>	
•  Made	improvements	over	the	old	“C-String”	

–  Library	contains	another	collection	of	functions	that	work	with	Strings,		
but	not	C-Strings!	

5/1/18	 Matni,	CS16,	Sp18	 18	

Why	Do	We	Care	About	C-Strings??	

•  Their	use	STILL	comes	up	in	C++	
– Recall:	command	line	arguments…	

•  Recall	that	command-line	arguments,	specifically	argv[x]	
are	defined	as: 	 	 	char*	[]	

	
•  That’s	a	classic	definition	of	a	C-String	

– So	if	we	want	to	use	these	argv[x],	we’ll	have	to	treat	them	in		
a	C-String	fashion…	

5/1/18	 Matni,	CS16,	Sp18	 19	

C	strings	vs.	C++	strings	

•  Strings	in	C++	and	Strings	in	C	
– C++	is	meant	to	be	backwards	compatible	with	C	
– C	has	one	way	of	dealing	with	strings,	while	C++	has	another	

•  C++’s	use	is	much	easier	and	safer	with	memory	allocation	
– This	is	what	you’ve	learned	so	far	with	<string>	
– Let’s	briefly	review	the	other	(older)	way	with	C-strings…	

5/1/18	 Matni,	CS16,	Sp18	 20	

What’s	a	C++	Programmer	to	Do?!	

•  A	C-string	
– An	array	of	characters	terminated	by	the	null	character	‘\0’	
–  The	null	character	has	an	ASCII	code	of	0.	
–  Library	for	dealing	with	these	types:	<cstring>		

•  A	C++	string	object	
– An	instance	of	a	“class”	data	type	–	used	a	“black	box”	
–  Library	for	dealing	with	these	types:	<string>	

5/1/18	 Matni,	CS16,	Sp18	 21	

The	C-String	
•  An	array	of	characters	that	terminates	in	the	null	character	

–  This	terminates	the	actual	string,	but	not	the	array	necessarily	

•  Example	:	a	C-string	stores	“Hi	Mom!”	in	a	character	array	of	size	10		
–  The	characters	of	the	word	“Hi	Mom!”	will	be	in	positions	with	indices	0	to	6	
–  There	will	be	a	null	character	at	index	7,	and	the	locations	with	indices	8	to	9	will	contain	
some	unknown	value.		

–  But	we	don’t	care	about	positions	8	and	9!	
–  The	null	character	says	“STOP	HERE!”	

5/1/18	 Matni,	CS16,	Sp18	 22	

s[0] s[1] s[2] s[3] s[4] s[5] s[6] s[7] s[8] s[9]

H i M o m ! \0 ?? ??

C-strings	
•  To	declare	a	C-string	variable,	include	<cstring>	and	use	this	syntax:	
	
char	Array_name[Maximum_C_String_Size	+	1];	
–  The	“+	1”	reserves	the	additional	character	needed	by	‘\0’	

•  With	C-Strings,	you	cannot	do	these:	
	 	 	 	 	 	 	 	myString	=	“Hello!”	 	 	 	//assignment	
	 	 	 	 	 	 	 	if	(myString	==	“Jimbo”)… 	//comparison	

–  Instead	use	strncpy()	and	strcmp()	from	the	<cstring>	library	

•  But	you	CAN	use	=	and	==	with	C++	Strings	
–  And	so	much	more	useful	things!	J	

5/1/18	 Matni,	CS16,	Sp18	 23	

The	Standard	C++	string	Class	

•  The	strings	we	know	and	love…	
•  The	string	class	allows	the	programmer	to	treat	strings	as	a	basic	data	type	

–  No	need	to	deal	with	the	implementations	of	C-strings	

•  The	string	class	is	defined	in	the	<string>	library	

•  We	will	discuss	many	different	member	functions	that	are	extremely	useful	
to	use	
–  Like	.length(),	.erase(),	.substr(),	.find(),	etc…	

5/1/18	 Matni,	CS16,	Sp18	 24	

Declaring	a	String	in	C++	

•  You	have	to	include	the	correct	library	module	with:		
	 	 	 	#include	<string>	

•  Declare	them	(and	initialize	them)	with:	
	 	 	 	string	MyString=“”;	//	Note	the	use	of	double-quotes!	

•  Since	strings	are	made	up	of	characters,	you	can	index	individual	characters	
in	strings	(starting	at	position	0):	

If 						MyString	=	“Hello!”	
Then		MyString[0]	=	‘H’,	MyString[1]	=	‘e’,	etc…	

5/1/18	 Matni,	CS16,	Sp18	 25	

String	Basics	

•  Use	the	+	operator	to	concatenate	2	strings	
string	str1	=	“Hello	”,	str2	=	“world!”,	str3;	
str3	=	str1	+	str2;			//	str3	will	be	“Hello	world!”	
	

•  Use	the	+=	operator	to	append	to	a	string	
str1	+=	“Z”;			//	str1	will	be	“Hello	Z”	
	

•  Call	out	a	character	in	the	string	based	on	position,	using	[]	braces	
–  Recall	array	indices	in	C++	start	at	zero	(0)	
cout	<<	str1[0];			//	prints	out	‘H’	
cout	<<	str2[3];			//	prints	out	‘l’	

5/1/18	 Matni,	CS16,	Sp18	 26	

Built-In	String	Member	Functions	

•  Search	functions	
– find,				rfind,				find_first_of,				find_first_not_of	

•  Descriptor	functions	
– length,				size	

•  Content	changers	
– substr,				replace,				append,				insert,				erase	

5/1/18	 Matni,	CS16,	Sp18	 27	

Search	Functions:	find 	 	1	

•  You	can	search	for	a	the	first	occurrence	of	a	string	in	a	string	
with	the	.find	function	
		

	
	string	str	=	“With	a	banjo	on	my	knee	and	ban	the	bomb-ban!”;	
	int	position	=	str.find(“ban”);	
	cout	<<	position; 	 	//	Will	display	the	number	7	

5/1/18	 Matni,	CS16,	Sp18	 28	

[7]	

Search	Functions:	find 	 	2	

•  You	can	also	search	for	a	the	first	occurrence	of	a	string	in	a	
string,	starting	at	position	n,	using	a	slight	mod	to	.find()	
		
		
	string	str	=	“With	a	banjo	on	my	knee	and	ban	the	bomb-ban!”;	
	int	position	=	str.find(“ban”,	12);	
	cout	<<	position; 	 	//	Will	display	the	number	28	

5/1/18	 Matni,	CS16,	Sp18	 29	

?	[28]	

Search	Functions:	find 	 	3	

•  You	can	use	the	find	function	to	make	sure	a	substring	is	NOT	
in	the	target	string	using	the	“no	position”	value	

	 	string::npos	 	is	returned	if	no	position	exists	
		
	if	(MyStr.find("piano")	==	string::npos)		
	 	 	cout	<<	"There	is	no	piano	there!”	
	//	This	will	happen	if	“piano”	is	NOT	in	the	string	MyStr	

5/1/18	 Matni,	CS16,	Sp18	 30	

Search	Functions:	rfind 	 		 		

•  You	can	search	for	a	the	last	occurrence	of	a	string	in	a	string	
with	the	.rfind	function	

	string	str	=	“With	a	banjo	on	my	knee	and	ban	the	bomb-ban!”;	
	int	rposition	=	str.rfind(“ban”);	
	cout	<<	rposition;	 	//	Will	display	the	number	41	

5/1/18	 Matni,	CS16,	Sp18	 31	

[41]	

Search	Functions:	
find_first_of	and	find_first_not_of	

•  find_first_of	
–  Finds	1st	occurrence	of	any	of	the	characters	included	in	the	specified	string	

•  find_first_not_of		
–  Finds	1st	occurrence	of	a	character	that	is	not	any	of	the	characters	

	 	 	 	 	 	 	 	included	in	the	specified	string	

•  Example:	

5/1/18	 Matni,	CS16,	Sp18	 32	

See	demo	file:	
non_numbers.cpp	

Descriptor	Functions:	length	and	size	

•  The	length	function	returns	the	length	of	the	string	
•  The	member	function	size	is	the	same	exact	thing…	

–  So,	if	string	str1	=	“Mama	Mia!”,		
	 	 	 	 	 	then	str1.length()	=	9	
	 	 	 	 	 	and	str1.size()	=	9	also	

Example	–	what	will	this	code	do?:	

	

5/1/18	 Matni,	CS16,	Sp18	 33	

string	name	=	“Bubba	Smith”;	
for	(int	i	=	name.length();	i	>	0;	i--)	
	 	cout	<<	name[i-1];	

Content	Changers:	append	

•  Use	function	append	to	append	one	string	to	another	
	string	name1	=	“	Max”;	
	string	name2	=	“	Powers”;	
	cout	<<	name1.append(name2); 	//	Displays	“	Max	Powers”	

•  Does	the	same	thing	as:	name1	+	name2	
	

5/1/18	 Matni,	CS16,	Sp18	 34	

Content	Changers:	erase	

•  Use	function	erase	to	clear	a	string	to	an	empty	string	

•  One	use	is:		
name1.erase()	--	Does	the	same	thing	as:	name1	=	“”	

•  Another	use	is:		
name1.erase(start	position,	how	many	chars	to	erase)	
–  Erases	only	part	of	the	string	
–  Example:		
string	s	=	“Hello!”;	
cout	<<	s.erase(2,	2);		//	Displays	“Heo!”	

5/1/18	 Matni,	CS16,	Sp18	 35	

Content	Changers:	replace	and	insert	
•  Use	function	replace	to	replace	part	of	a	string	with	another	

– Popular	Usage:		
string.replace(start	position,	#	of	places	after	start	position	to	replace,				
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	replacement	string)	

•  Use	function	insert	to	insert	a	substring	into	a	string	
– Popular	Usage:		
string.insert(start	position,	insertion	string)	

Example:	
	string	country	=	“Back	in	the	USSR”;	 	 	//	length	is	16	
	cout	<<	country.replace(14,	2,	“A”);	 	 	//	Displays		
	cout	<<	country.insert(15,	“BC”);	 	 	//	Displays		

	
“Back	in	the	USABC”	
“Back	in	the	USA”	

5/1/18	 Matni,	CS16,	Sp18	 36	

Content	Changers:	substr	

•  Use	function	substr	(short	for	“substring”)	to		extract	and	
return	a	substring	of	the	string	object	
– Popular	Usage:		
string.substr(start	position,	#	of	places	after	start	position)	

Example:	
	string	city	=	“Santa	Barbara”;	
	cout	<<	city.substr(3,	5)				//	Displays		

	
“ta	Ba”	

5/1/18	 Matni,	CS16,	Sp18	 37	

YOUR	TO-DOs	

q Prepare	Lab4	for	Wednesday!	
q Do	HW8	by	next	Thursday	

q Visit	Prof’s	and	TAs‘	office	hours	if	you	need	help!	

q Run	a	mile.	Or	two.	

5/1/18	 Matni,	CS16,	Sp18	 38	

5/1/18	 Matni,	CS16,	Sp18	 39	

