
Compiling	with	Multiple	Files	
The	Importance	of	Debugging	

CS	16:	Solving	Problems	with	Computers	I	
Lecture	#7	

	
Ziad	Matni	

Dept.	of	Computer	Science,	UCSB	

Lecture	Outline	

•  Programming	in	Multiple	Files	
•  The	Magic	of	Makefiles!	

•  Design	and	Debug	Tips	
– Designing	and	Debugging	Loops	
– The	Mighty	TRACE	
– Designing	and	Debugging	Functions	

4/25/18	 Matni,	CS16,	Sp18	 2	

C++	Programming	in	Multiple	Files	

•  Novice	C++	Programming:	
–  All	in	one	.cpp	source	code	file	
–  All	the	function	definitions,	plus	the	main()	program	

•  Actual	C++	Programming	separates	parts	
–  There	are	usually	one	or	more	header	files	with	file	names	ending	in	.h	that	

typically	contain	function	prototypes	

–  There	are	one	or	more	files	that	contain	function	definitions,	some	with	main()	
functions,	and	others	that	don't	contain	a	main()	function	

4/25/18	 Matni,	CS16,	Sp18	 3	

Why?	
•  Reusability	

–  Some	parts	of	the	program	are	generic	enough	that	we	can	use	them	over	again	
–  Reuse	is	not	necessarily	just	in	one	program!	

•  Modularization	
–  Create	stand-alone	pieces	of	code	
–  Can	contain	sets	of	functions	or	sets	of	classes	(or	both)	
–  A	library	is	a	module	that	is	in	an	already-compiled	form	(i.e.	object	code)	

•  Independent	work	flows	
–  If	we	have	multiple	people	working	on	a	project,	it	is	a	good	idea	to	break	it	into	pieces	so	that	

everyone	can	work	on	their	files	

•  Faster	re-compilations	&	debug	
–  When	you	make	a	change,	you	only	have	to	re-compile	the	part(s)	that	have	changed	
–  Easier	to	debug	a	portion	than	the	entire	program!	

4	

5	

#include	<etc…>	
#include	<etc…>	
float	linearScale(...);	
float	quadraticScale(...);	
float	bellCurve(...);	
	
	
float	linearScale(...){	...	}	
float	quadraticScale(...)	{	...	}	
float	bellCurve(...)	{	...	}	
	
int	main()	
{	
				...	
}	

//	File:	MyFunctions.h	
#include	<etc…>	
float	linearScale(...);	
float	quadraticScale(...);	
float	bellCurve(...);	
	
//	File:	MyFunctions.cpp	
#include	“MyFunctions.h”	
float	linearScale(...){	...	}	
float	quadraticScale(...)	{	...	}	
float	bellCurve(...)	{	...	}	
	
//	File:	main.cpp	
#include	“MyFunctions.cpp”	
	
int	main()	
{	
				...	
}	

Compiling	Everything…	
g++	-c	MyFunctions.cpp	–o	Myfunctions.o		

	 	 	 	 	 	 	 	 	(creates	MyFunctions.o)	
g++	-c	main.cpp	–o	main.o	
	 	 	 	 	 	 	 	 	(creates	main.o)	

The	–c	option	creates	object	code	–	this	is	machine	language	code,		
but	it’s	not	the	entire	program	yet…	The	target	object	file	here	is	always	generated	as	a	.o	type	

	
	
g++	-o	ProgX	main.o	MyFunctions.o	
	 	 	 	 	 	 	 	 	(creates	ProgX)	

The	–o	option	creates	object	code	–	in	this	case,	it’s	object	code	created	from	other	object	code.	The	result	is	the	entire	
program	in	executable	form.	The	object	file	here	is	always	generated	with	the	name	specified	after	the	–o	option.	

	
4/25/18	 Matni,	CS16,	Sp18	 6	

What	Do	You	End	Up	With?	
MyFunctions.h 	 	 	Header	file	w/	function	prototypes	
MyFunctions.cpp 	 	 	C++	file	w/	function	definitions	
MyFunctions.o 	 	 	Object	file	of	MyFunctions.cpp	
main.cpp 	 	 	 	 	C++	file	w/	main	function	
main.o	 	 	 	 	 	Object	file	of	main.cpp	
ProgX 	 	 	 	 	 	“Final”	executable	file	
	

…and	this	is	a	simple	example!!…	
Wouldn’t	it	be	nice	to	have	code	that	generates/controls	this?	

4/25/18	 Matni,	CS16,	Sp18	 7	

There	Are	Several	Ways	To	Do		
This	Piece-wise	Approach	

•  See	“example1”	and	“example2”	in	the	demo	code	for	this	
lecture	(demo_lecture07)	

•  example1:	similar	to	the	one	we	just	went	through	

•  example2:	by	re-arranging	headers,	we	can	make	one	compile	
command	(simpler,	but	also	more	limiting)	

4/25/18	 Matni,	CS16,	Sp18	 8	

Make	

•  “Make”	is	a	build	automation	tool	
– Automatically	builds	executable	programs	and	libraries		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	from	source	code	
– The	instructions	for	make	is	in	a	file	called	Makefile.	

	
•  Makefile	is	code	written	in	OS-friendly	code	
– Linux	OS,	to	be	precise…	

4/25/18	 Matni,	CS16,	Sp18	 9	

Makefile	

•  The	file	must	be	called	“makefile”	(or	“Makefile”)	

•  Put	all	the	instructions	you’re	going	to	use	in	there	
–  There	is	a	syntax	to	follow	for	makefiles	
–  Just	type	“make”	at	the	prompt,	instead	of	all	the	g++	commands	

•  Makefiles	can	easily	be	used	to	do	other	OS-related	stuff	
–  Like	“clean	up”	your	area,	for	example	

4/25/18	 Matni,	CS16,	Sp18	 10	

Syntax	of	a	Make	
all:	Exercise1	Exercise2	
	
#	This	one	forces	the	compile	to	use	version	11	rules	
#	Also	shows	me	all	warnings	(not	just	errors)	
Exercise1:	ex1.cpp	
							 	g++	ex1.cpp	–o	ex1	-std=c++11	–Wall		
	
#	This	next	one’s	a	doozy	
Exercise2:	ex2.cpp	
							 	g++	ex2.cpp	–o	ex2	
clean:		
						 	rm	*.o	ex2	ex1	
	

4/25/18	 Matni,	CS16,	Sp18	 11	

Syntax	of	a	Make	
all:	Exercise1	Exercise2	
	
#	This	one	forces	the	compile	to	use	version	11	rules	
#	Also	shows	me	all	warnings	(not	just	errors)	
Exercise1:	ex1.cpp	
							 	g++	ex1.cpp	–o	ex1	-std=c++11	–Wall		
	
#	This	next	one’s	a	doozy	
Exercise2:	ex2.cpp	
							 	g++	ex2.cpp	–o	ex2	
clean:		
	 	 	rm	*.o	ex2	ex1	

4/25/18	 Matni,	CS16,	Sp18	 12	

Target	“all”	programs	in	
this	project	

Dependencies	(macros)	
that	are	declared	below	

Note:	These	are	TAB	
characters	used	for	the	

indents!	
Don’t	use	spaces!!	

#	is	for	commenting	

Doesn’t	have	to	be	compiling	
instructions	only!	

Dependency	files	

What’s	in	Your	Directory?	

Before	you	run	your	make	(and	compile),	
your	directory	should	have	at	least	these	files	

(per	the	example	from	the	previous	slide)	
	

ex1.cpp	
ex2.cpp	
makefile	

4/25/18	 Matni,	CS16,	Sp18	 13	

Using	make	in	the	Linux	OS	Environment	
•  Now	that	you	have	a	makefile,	you	can	execute	a	compiling	process	simply	by	issuing:	
	
$	make 	 	 	 	ß	This	is	will	create	ALL	the	output	executables	
	
•  Or	you	can	execute	make	for	one	dependency	(i.e.	program)	in	particular,	like	this:	
	
$	make	Exercise1	 	ß	This	is	will	create	the	output	executable	for	

	 	 	 	 	 	 	 	 	Exercise1	(i.e.	the	file	ex1	in	our	example)	

•  In	our	example,	we	even	provided	a	way	to	“clean	up”	after	we’re	done	by	deleting	all	the	
executables	that	we	created	(in	case	we	wanted	to	run	the	compiling	again,	let’s	say)	

	
$	make	clean	 	 	ß	This	will	delete	all	the	executables	that	we	created	(like	ex1	and	ex2)	
	
	4/25/18	 Matni,	CS16,	Sp18	 14	

4/25/18	 Matni,	CS16,	Sp18	 15	

Debugging	Loops	

Common	errors	involving	loops	include:	
	
•  Off-by-one	errors	in	which	the	loop	executes	one	too	many	or	

one	too	few	times	
	

•  Infinite	loops	usually	result	from	a	mistake	in	the	Boolean	
expression	that	controls	the	loop	

4/25/18	 Matni,	CS16,	Sp18	 16	

Fixing	Off-By-One	Errors	

•  Check	your	comparison:	should	it	be			<			or				<=			?	
– Saw	a	few	mistakes	like	this	on	the	exam	L	

•  Check	that	the	var.	initialization	uses	the	correct	value	
	

4/25/18	 Matni,	CS16,	Sp18	 17	

Fixing	Infinite	Loops	

•  Common	mistake:	check	the	direction	of	inequalities:	
	 	 	 	 	 	should	I	use			<				or				>				?	
	
•  Lean	towards	using		<		or		>	in	your	loop	conditions	
•  Avoid	equality	(==)	or	inequality	(!=)	

4/25/18	 Matni,	CS16,	Sp18	 18	

More	Loop	Debugging	Tips:	Tracing	

•  Be	sure	that	the	mistake	is	really	in	the	loop	

• Trace	the	variable	to	observe	how	it	changes		
– Tracing	a	variable	is	watching	its	value	change	during	execution.	
– Best	way	to	do	this	is	to	insert	cout	statements		

	 	 	and	have	the	program	show	you	the	variable		
	 	 	 	 	 	 	 	 	 	at	every	iteration	of	the	loop.	

4/25/18	 Matni,	CS16,	Sp18	 19	

Debugging	Example	
•  The	following	code	is	supposed	to	conclude	with	the	variable	

“product”	equal	to	the	product	of	the	numbers	2	through	5	
–  i.e.	2	x	3	x	4	x	5,	which,	of	course,	is	120.	

•  What	could	go	wrong?!	J	
	
	 	int	next	=	2,	product	=	1;	

			 	while	(next	<	5)	
					{		
						 	next++;	
	 						product	=	product	*	next;	
					}	

Where	might	you	put	a	trace?	

4/25/18	 Matni,	CS16,	Sp18	 20	

DEMO!	
Using	variable	tracing	

Loop	Testing	Guidelines	

•  Every	time	a	program	is	changed,	it	should	be	re-tested	
– Changing	one	part	may	require	a	change	to	another	

•  Every	loop	should	at	least	be	tested	using	input	to	cause:	
–  Zero	iterations	of	the	loop	body	
– One	iteration	of	the	loop	body	
– One	less	than	the	maximum	number	of	iterations	
–  The	maximum	number	of	iterations	

4/25/18	 Matni,	CS16,	Sp18	 21	

If	all	of	these	are	ok,	
you	likely	have	a		
very	robust	loop	

Starting	Over	

•  Sometimes	it	is	more	efficient	to	throw	out	a	buggy	program	
and	start	over!	
– The	new	program	will	be	easier	to	read		
– The	new	program	is	less	likely	to	be	as	buggy	
– You	may	develop	a	working	program	faster	than	if	you	work	to	

repair	the	bad	code	
•  The	lessons	learned	in	the	buggy	code		

	 	 	will	help	you	design	a	better	program	faster	

4/25/18	 Matni,	CS16,	Sp18	 22	

Testing	and	Debugging	Functions	

•  Each	function	should	be	tested	as	a	separate	unit	

•  Test	functions	by	themselves:	it	make	finding	mistakes	easier!	

•  “Driver”	or	“Test”	Programs	can	help	
–  Yes:	create	another	program	to	test	your	original	program…	

•  Once	a	function	is	tested,	it	can	be	used	in	the	driver	program	to	test	
other	functions	

4/25/18	 Matni,	CS16,	Sp18	 23	

Example	of	a	Driver	Test	Program	

4/25/18	 Matni,	CS16,	Sp18	 24	

Stubs	
•  When	a	function	being	tested		

	 	 	 	 	calls	other	functions	that	are	not	yet	tested,	use	a	stub	

•  A	stub	is	a	simplified	version	of	a	function	
–  A	placeholder	for	the	real	thing…	
–  i.e.	they’re	fake	functions	

•  Stubs	should	be	so	simple		
	 	 	 	that	you	have	full	confidence	they	will	perform	correctly	

4/25/18	 Matni,	CS16,	Sp18	 25	

#include	<iostream>	
#include	<cmath>	
use	namespace	std;	
double	WeirdCalc(double	x,	double	y);	
	
int	main()	{	

	double	n,	m,	w;	
	cout	<<	“Enter	the	2	values	for	weird	calculation:	”;	
	cin	>>	n	>>	m;	
	w	=	WeirdCalc(n,	m)	/	(37	–	pow(n/m,	m/n));	
	cout	<<	“The	answer	is:	”	<<	w	<<	endl;	
	return	0;	

}	
	
double	WeirdCalc(double	x,	double	y)	
{	

	return	((sqrt(pow(3*x,	y%(max(x,y)))	–	sqrt(5*y/(x-6))	+	0.5*pow((x+y),	-0.3);	
}	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
	
	

Stub	Example	

4/25/18	 Matni,	CS16,	Sp18	 26	

#include	<iostream>	
#include	<cmath>	
use	namespace	std;	
double	WeirdCalc(double	x,	double	y);	
	
int	main()	{	

	double	n,	m,	w;	
	cout	<<	“Enter	the	2	values	for	weird	calculation:	”;	
	cin	>>	n	>>	m;	
	w	=	WeirdCalc(n,	m)	/	(37	–	pow(n/m,	m/n));	
	cout	<<	“The	answer	is:	”	<<	w	<<	endl;	
	return	0;	

}	
	
double	WeirdCalc(double	x,	double	y)	//	Make	WeirdCalc	a	stub	–	just	for	testing!!	
{	

	//return	((sqrt(pow(3*x,	y%(max(x,y)))	–	sqrt(5*y/(x-6))	+	0.5*pow((x+y),	-0.3);	
	return	(7);	

}	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
	
	

Stub	Example	

4/25/18	 Matni,	CS16,	Sp18	 27	

Debugging	Your	Code:	The	Rules	

•  Keep	an	open	mind	
– Don’t	assume	the	bug	is	in	a	particular	location	

•  Don’t	randomly	change	code	without	understanding	what	you	
are	doing	until	the	program	works	
–  This	strategy	may	work	for	the	first	few	small	programs	you	write		
but	it	is	doomed	to	failure	for	any	programs	of	moderate	complexity	

•  Show	the	program	to	someone	else	

4/25/18	 Matni,	CS16,	Sp18	 28	

General	Debugging	Techniques	
•  Check	for	common	errors,	for	example:	
–  Local	vs.	Reference	Parameters	
–  =	instead	of	==	
–  Did	you	use	&&	when	you	meant	||?	
–  These	are	typically	errors	that	might	not	get	flagged	by	a	compiler!!	

•  Localize	the	error	
– Narrow	down	bugs	by	using	tracing	and	stub	techniques	
– Once	you	reveal	the	bug	and	fix	it,	remove	the	extra	cout	statements	

•  Your	textbook	has	great	debugging	examples	

4/25/18	 Matni,	CS16,	Sp18	 29	

Pre-	and	Post-Conditions	
Concepts	of	pre-condition	and	post-condition	in	functions	

	We	recommend	you	use	these	concepts	when	making	comments	
	
Pre-condition:	What	must	“be”	before	you	call	a	function	
•  States	what	is	assumed	to	be	true	when	the	function	is	called	
•  Function	should	not	be	used	unless	the	precondition	holds	

Post-condition:	What	the	function	will	do	once	it	is	called	
•  Describes	the	effect	of	the	function	call	
•  Tells	what	will	be	true	after	the	function	is	executed	

(when	the	precondition	holds)	
•  If	the	function	returns	a	value,	that	value	is	described	
•  Changes	to	call-by-reference	parameters	are	described	

4/25/18	 Matni,	CS16,	Sp18	 30	

Why	use	Pre-	and	Post-conditions?	

•  Pre-conditions	and	post-conditions	should	be	the	first	step	in	
designing	a	function	

•  Specify	what	a	function	should	do	BEFORE	designing	it	
–  This	minimizes	design	errors	and	time	wasted	writing	code	that	doesn’t	

match	the	task	at	hand	

4/25/18	 Matni,	CS16,	Sp18	 31	

Example	

void	write_sqrt(double	x)	
//			Precondition:		 	x		>=		0.	
//			Postcondition:			The	square	root	of	x	has	
//			been	written	to	the	standard	output	
{	
	cout	<<	sqrt(x)	<<	endl;	

}	
	

4/26/18	 Matni,	CS16,	Sp18	 32	

YOUR	TO-DOs	

q Finish	Lab3	by	next	Monday	
q Prepare	Lab4	for	next	Wednesday	
q Do	HW7	by	next	Tuesday	

q Visit	Prof’s	and	TAs‘	office	hours	if	you	need	help!	

q Hug	a	tree!	(or	a	loved	one	will	do)	

4/25/18	 Matni,	CS16,	Sp18	 33	

4/25/18	 Matni,	CS16,	Sp18	 34	

