Call-by-Type Functions in C++
Command-Line Arguments in C++

CS 16: Solving Problems with Computers |
Lecture #5

Ziad Matni
Dept. of Computer Science, UCSB

Administrative

* CHANGED T.A. OFFICE/OPEN LAB HOURS!
— Thursday, 10 AM - 12 PM Mugsit Nawaz
— Friday, 11 AM - 1 PM Xiyou Zhou

* Linux Workshop THIS Week!
— HFH Conference Room (HFH 1132)
— Friday, April 20th, 1:00 - 2:30 PM
— Material will be put up on the class website

* Your 15t Midterm Exam is NEXT TUESDAY (4/24)!!!
— Omgomgomgomgomgomgomgomgomgomg

4/17/18 Matni, CS16, Sp18

MIDTERM IS COMING!

* Tuesday, 4/24 in this classroom

e Starts at 2:00 PM **SHARP**
— Please start arriving 5-10 minutes before class

* | may ask you to change seats
* Please bring your UCSB IDs with you

* Closed book: no calculators, no phones, no computers

* Only allowed ONE 8.5”x11” sheet of notes — one sided only
— You have to turn it in with your exam

* You will write your answers on the exam sheet itself.

4/17/18 Matni, CS64, Wil8 3

What’s on the Midterm#1?
From the Lectures, including...

Intro to Computers, Programming, and C++

Variables and Assignments

Boolean Expressions
(comparison of variables)

Input and Output on Standard Devices
(cout, cin)

Data Types, Escape Sequences,
Formatting Decimal

Arithmetic Operations and their Priorities

Boolean Logic Operators

Flow of Control & Conditional Statements

4/17/18

Loops: for, while, do-while
Types of Errors in Programming

Multiway Branching and the switch
command

Generating Random Numbers

Functions in C++:

pre-defined, user-defined

void functions, the main() function
call-by-ref vs. call-by-value

Command Line Inputs to C++ Programs
Separate compilations and makefiles

Matni, CS16, Sp18

Midterm Prep

1. Lecture slides
2. Lab programs
3. Homework problems

4. Book chapters 1 thru 5*

*check which lecture slides go with it!!

4/17/18 Matni, CS16, Sp18

Lecture Outline

* void functions
e Call-by-value vs. Call-by-reference Functions
e Command-line Arguments

4/17/18 Matni, CS16, Sp18

Class Exercise 1 Dermno!

» Let’s write a program together that contains a function, called FallTime,
that calculates the time it takes for a mass to be dropped from a variable

height h, given the formula: - v',,% SR O

Algorithm:
1. FallTime will take as argument, d. It will return the value of t.

2. main() will ask the user for h (in meters).
3. main() will call FallTime(h).
4. main() will print out the value of FallTime(h) (in seconds).

4/17/18 Matni, CS16, Sp18

Class Exercise 2 Dermno!

* Let’s write a program together that contains a function, called Writelt, that
takes a string called message and an integer called r. It then prints out the
string repeated r times with an exclamation mark and space between each
repetition. The function does not return anything.

4/17/18 Matni, CS16, Sp18 8

Call-by-Value vs Call-by-Reference

 When you call a function, your arguments are getting passed on as
values into the function

— At least, with what we’ve seen so far...

— The call funcX(a, b) passes on (into the function) the values of aand b
* Seems logical enough...!?

* You can also call a function with your arguments used as references to
the actual variable location in memory
— So, you’re not passing the variable itself, but it’s location in memory!

4/17/18 Matni, CS16, Sp18 9

int main()

{

Call-by-Reference Parameters - ;.7 _. , s,

“Call-by-reference” parameters allow us to change the

variable used in the function call

“Call-by-value” parameters do NOT change the
variable used in the function call

In the example shown here, the output would be:
X in funl: 9

X in fun2: 9
a=5;,b=9

Why did a not change??
Why did b change??

We use the ampersand symbol (&) to distinguish a
variable as being called-by-reference, in a function
definition

4/17/18 Matni, CS16, Sp18

funl(a);
fun2(b);
cout << "a "< axkk " ",
cout << "b << b << endl;

}
void funl(int x) // call by value
{

X += 4;
cout << "x 1in funl:

<< X << endl;

}

void fun2(int &x) // call by ref.
{

X += 4;
cout << "x in fun2:

<< X << endl;

Call-by-Reference Behavior

* Assume int variables first and second are assigned memory addresses 1036 and 1040
(this is usually done by the compiler. Also, these are made-up memory addresses...!)

* Now a function call executes: get_numbers(first, second);

e The function is defined as:
void get_numbers(int &first, int &second)

cout << “Enter two integers: ’;
cin >> first >> second;

}

* The function may as well say:
void get_numbers(the int var at mem Location 1036, the int var at mem Location 1040)

cout << “Enter two integers: ”

cin >> the variable at memory Location 1036;
>> the variable at memory Llocation 1040;

4/17/18 Matni, CS16, Sp18 11

Call-By-Reference Details

void fun2(intl§x) // call by ref.

The memory location of the argument variable is given to the formal parameter
— Not the argument variable itself!

Whatever is done to a formal parameter inside the function,
is actually done to the value at the memory location of the argument variable

— A subtle, but important, difference!

It has the effect of making the called-by-reference variable act like a global var.
— If it changes inside the function, it changes outside the function too
— But it’s better than using a global variable! ...(why?)

4/17/18 Matni, CS16, Sp18

12

Class Exercise 3 Demo!

* Let’s write a program together that contains a function, called swap, that
takes a two integer variables as input arguments and causes their values to

swap, like in this example:

int a = 3, b = 9;

cout << a << "; " << b << endl;

// This should print out “3; 9%

swap(a, b);

cout << a << "; " << b << endl;

// This should print out “9 ; 3”

4/17/18 Matni, CS16, Sp18 13

4/17/18

Example: swap_values

void swap(int &variablel, int &variable2)

{
int temp = variablel;
variablel = variable2;
variable2 = temp;

}

We can ONLY do this if the function is call-by-reference!

Matni, CS16, Sp18

14

Mixed Parameter Lists

e Call-by-value and call-by-reference parameters
can be mixed in the same function

 Example:
void good stuff(int , int par2, double);
and are call-by-reference formal parameters

* Changes in parl and par3 change the argument variable

— par2 is a call-by-value formal parameter
* Changes in par2 do not change the argument variable

4/17/18 Matni, CS16, Sp18 15

Caution! Inadvertent Local Variables

e Forgetting the ampersand (&) creates a call-by-value parameter
— You just ensured that a variable will remain local to the function
(when your intention was NOT to do that!)

* This is a hard error to debug/find... because it looks right!
— So, be careful...

4/17/18 Matni, CS16, Sp18 16

4/17/18

Matni, CS16, Sp18

17

Command Line Arguments with C++

* |n C++ you can accept command line arguments

— That is, when you execute your code, you can pass input values at the same time

 These are arguments (inputs) that are passed into the program
from the OS command line

* For example, from the Linux OS command line:

$./addThese 2 3
5

4/17/18 Matni, CS16, Sp18

18

Command Line Arguments with C++

* To use command line arguments in your program,
you must add 2 special arguments to the main() function

* Argument #1.:
The number of elements that you are passing in: argc

* Argument #2:

The full list of all of the command line arguments as an array: *argv]]

This is an array pointer ... never mind the details, but more on those in a later class...

4/17/18 Matni, CS16, Sp18

19

Command Line Arguments with C++

* The main() function header should be written as:
int main(int argc, char* argv[]) { .. }
instead of int main() { .. }

* |n the OS, to execute the program, the command line form should be:
$ program_name argumentl argument2 .. argumentn

example:
$ sum of squares 4 5 6

4/17/18 Matni, CS16, Sp18

20

Demo!

int main (int argc, char *argv[])

{

cout << "There are " << argc <<

cout << "Let’s print out all the arguments:

for (int 1 = @; i < argc; i++)
cout << "argv[" << i << "] 1is

95

4/17/18 Matni, CS16, Sp18

arguments here:" << endl;
<< endl;

<< argv[i] << endl;

21

argv[n] Is Always a Character Type!

 While argc is always an int (it’s calculated by the compiler for you)...

...all you get from the command-line is character arrays
— This is a hold-out from the early days of C (i.e. pre-C++)

— So, the data type of argument being passed is always an array of characters
(a.k.a. a C-string — more on those later in the quarter...)

* To treat an argument as another type (like a number, for instance),
you have to first convert it inside your program

e <cstdlib> library has pre-defined functions to help!

4/17/18 Matni, CS16, Sp18

22

Example:

4/17/18

argv[] to int

Examples: atoi() and atof()

What If | Want an Argument That’s a Number?

argv[] to double

Convert a character array into int and double, respectively.

#include <iostream>
#include <cstdlib>
using namespace std;

{

return 0;

int main(int argc, char *argv[])

int numl = atoi(argv[1l]);
int num2 = atoi(argv[2]);
int add = numl + num2;
int prod = numl * num2;
cout << num3 << endl;

This is the only way that we
can do arithmetic on the
first 2 arguments

23

YOUR TO-DOs

] Do Lab3 tomorrow (due Monday)
(1 Do HW5 by next Thursday

 Visit Prof’s and TAs‘ office hours if you need help!

J Eat your vegetables

4/17/18 Matni, CS16, Sp18

24

4/17/18

</LECTURE>

Matni, CS16, Sp18

25

