
Call-by-Type	Functions	in	C++	
Command-Line	Arguments	in	C++	

CS	16:	Solving	Problems	with	Computers	I	
Lecture	#5	

	
Ziad	Matni	

Dept.	of	Computer	Science,	UCSB	

Administrative	
•  CHANGED	T.A.	OFFICE/OPEN	LAB	HOURS!	
–  Thursday,	10	AM	–	12	PM	 	 	Muqsit	Nawaz	
–  Friday,	11	AM	–	1	PM 	 	 	 	Xiyou	Zhou	

•  Linux	Workshop	THIS	Week!	
–  HFH	Conference	Room	(HFH	1132)	
–  Friday,	April	20th,	1:00	–	2:30	PM	
– Material	will	be	put	up	on	the	class	website	

•  Your	1st	Midterm	Exam	is	NEXT	TUESDAY	(4/24)!!!	
– Omgomgomgomgomgomgomgomgomgomg	

4/17/18	 Matni,	CS16,	Sp18	 2	

•  Tuesday,	4/24	in	this	classroom	
•  Starts	at	2:00	PM	**SHARP**	
–  Please	start	arriving	5-10	minutes	before	class	

•  I	may	ask	you	to	change	seats	
•  Please	bring	your	UCSB	IDs	with	you	

•  Closed	book:	no	calculators,	no	phones,	no	computers	
•  Only	allowed	ONE	8.5”x11”	sheet	of	notes	–	one	sided	only	
–  You	have	to	turn	it	in	with	your	exam	

•  You	will	write	your	answers	on	the	exam	sheet	itself.	
4/17/18	 Matni,	CS64,	Wi18	 3	

What’s	on	the	Midterm#1?	
From	the	Lectures,	including…	

•  Intro	to	Computers,	Programming,	and	C++	
•  Variables	and	Assignments	
•  Boolean	Expressions		

(comparison	of	variables)	
•  Input	and	Output	on	Standard	Devices	

(cout,	cin)	
•  Data	Types,	Escape	Sequences,	

Formatting	Decimal	
•  Arithmetic	Operations	and	their	Priorities	
•  Boolean	Logic	Operators	
•  Flow	of	Control	&	Conditional	Statements	

•  Loops:	for,	while,	do-while	
•  Types	of	Errors	in	Programming	
•  Multiway	Branching	and	the	switch	

command	
•  Generating	Random	Numbers	
•  Functions	in	C++:	

pre-defined,	user-defined	
void	functions,	the	main()	function	
call-by-ref	vs.	call-by-value	

•  Command	Line	Inputs	to	C++	Programs	
•  Separate	compilations	and	makefiles	

4/17/18	 Matni,	CS16,	Sp18	 4	

Midterm	Prep	

1.  Lecture	slides	

2.  Lab	programs	

3.  Homework	problems	

4.  Book	chapters	1	thru	5*	

*check	which	lecture	slides	go	with	it!!	
4/17/18	 Matni,	CS16,	Sp18	 5	

Lecture	Outline	

•  void	functions	
•  Call-by-value			vs.			Call-by-reference		Functions		
•  Command-line	Arguments	

4/17/18	 Matni,	CS16,	Sp18	 6	

Class	Exercise	1	

•  Let’s	write	a	program	together	that	contains	a	function,	called	FallTime,	
that	calculates	the	time	it	takes	for	a	mass	to	be	dropped	from	a	variable	
height	h,	given	the	formula: 	 	 	 		

Algorithm:	
1.  FallTime	will	take	as	argument,	d.	It	will	return	the	value	of	t.	
2.  main()	will	ask	the	user	for	h	(in	meters).	
3.  main()	will	call	FallTime(h).	
4.  main()	will	print	out	the	value	of	FallTime(h)	(in	seconds).	

4/17/18	 Matni,	CS16,	Sp18	 7	

=	sqrt(0.2038	d)	

Class	Exercise	2	

•  Let’s	write	a	program	together	that	contains	a	function,	called	WriteIt,	that	
takes	a	string	called	message	and	an	integer	called	r.	It	then	prints	out	the	
string	repeated	r	times	with	an	exclamation	mark	and	space	between	each	
repetition.	The	function	does	not	return	anything.	

4/17/18	 Matni,	CS16,	Sp18	 8	

Call-by-Value	vs	Call-by-Reference	

•  When	you	call	a	function,	your	arguments	are	getting	passed	on	as	
values	into	the	function	
–  At	least,	with	what	we’ve	seen	so	far…	
–  The	call	funcX(a,	b)	passes	on	(into	the	function)	the	values	of	a	and	b	

•  Seems	logical	enough…!?	

•  You	can	also	call	a	function	with	your	arguments	used	as	references	to	
the	actual	variable	location	in	memory	
–  So,	you’re	not	passing	the	variable	itself,	but	it’s	location	in	memory!	
– Why	would	we	want	to	do	that?	

4/17/18	 Matni,	CS16,	Sp18	 9	

ANS:	Vars	inside	functions	are	local	to	the		function!		
What	if	we	wanted	them	to	change	outside	of	it?	

	
	

Call-by-Reference	Parameters	

•  “Call-by-reference”	parameters	allow	us	to	change	the	
variable	used	in	the	function	call	

•  “Call-by-value”	parameters	do	NOT	change	the	
variable	used	in	the	function	call	

•  In	the	example	shown	here,	the	output	would	be:	
x	in	fun1:	9	
x	in	fun2:	9	
a	=	5;	b	=	9	

•  We	use	the	ampersand	symbol	(&)	to	distinguish	a	
variable	as	being	called-by-reference,	in	a	function	
definition		

4/17/18	 Matni,	CS16,	Sp18	 10	

int	main()	
{	
… 	… 	… 		

	int	a	=	5,	b	=	5;	
	fun1(a);	
	fun2(b);		
	cout	<<	"a	=	"	<<	a	<<	";	";	
	cout	<<	"b	=	"	<<	b	<<	endl;	

… 	… 	… 		
}	
	
void	fun1(int	x)		//	call	by	value	
{		

	x	+=	4;		
	cout	<<	"x	in	fun1:	"	<<	x	<<	endl;		

}	
	
void	fun2(int	&x)		//	call	by	ref.	
{		

	x	+=	4;		
	cout	<<	"x	in	fun2:	"	<<	x	<<	endl;	

}	

Why	did	a	not	change??	
Why	did	b	change??	

Call-by-Reference	Behavior	
•  Assume	int	variables	first	and	second	are	assigned	memory	addresses	1036	and	1040		

(this	is	usually	done	by	the	compiler.	Also,	these	are	made-up	memory	addresses…!)	

•  Now	a	function	call	executes:	get_numbers(first,	second);	

•  The	function	is	defined	as:	
	 	void	get_numbers(int	&first,	int	&second)		
	 	{	
	 	 	cout	<<	“Enter	two	integers:	”;	
	 	 	cin	>>	first	>>	second;		
	 	}	

•  The	function	may	as	well	say:	
	 	void	get_numbers(the	int	var	at	mem	location	1036,	the	int	var	at	mem	location	1040)		
	 	{	
	 	 	cout	<<	“Enter	two	integers:	”	
	 	 	cin	>>	the	variable	at	memory	location	1036;				
	 	 	 	>>	the	variable	at	memory	location	1040;		
	 	}	

4/17/18	 Matni,	CS16,	Sp18	 11	

Call-By-Reference	Details	

•  The	memory	location	of	the	argument	variable	is	given	to	the	formal	parameter	
– Not	the	argument	variable	itself!	

•  Whatever	is	done	to	a	formal	parameter	inside	the	function,		
is	actually	done	to	the	value	at	the	memory	location	of	the	argument	variable	
–  A	subtle,	but	important,	difference!	

•  It	has	the	effect	of	making	the	called-by-reference	variable	act	like	a	global	var.	
–  If	it	changes	inside	the	function,	it	changes	outside	the	function	too	
–  But	it’s	better	than	using	a	global	variable!	…(why?)	

4/17/18	 Matni,	CS16,	Sp18	 12	

void	fun2(int	&x)		//	call	by	ref.	

Class	Exercise	3	
•  Let’s	write	a	program	together	that	contains	a	function,	called	swap,	that	
takes	a	two	integer	variables	as	input	arguments	and	causes	their	values	to	
swap,	like	in	this	example:	

	int	a	=	3,	b	=	9;	
	cout	<<	a	<<	";	"	<<	b	<<	endl;	
	//	This	should	print	out	“3;	9”	
	swap(a,	b);	
	cout	<<	a	<<	";	"	<<	b	<<	endl;	
	//	This	should	print	out	“9	;	3”	

4/17/18	 Matni,	CS16,	Sp18	 13	

Example:		swap_values	
void	swap(int	&variable1,	int	&variable2)	
{	
					int	temp	=	variable1;	
					variable1	=	variable2;	
					variable2	=	temp;	
}	
	
	

We	can	ONLY	do	this	if	the	function	is	call-by-reference!	

4/17/18	 Matni,	CS16,	Sp18	 14	

Mixed	Parameter	Lists	
•  Call-by-value	and	call-by-reference	parameters		
	 	 	 	 	 	 	 	 	 	can	be	mixed	in	the	same	function	
	

•  Example:	
void	good_stuff(int	&par1,	int	par2,	double	&par3);	

–  par1	and	par3	are	call-by-reference	formal	parameters	
•  Changes	in	par1	and	par3	change	the	argument	variable	

–  par2	is	a	call-by-value	formal	parameter	
•  Changes	in	par2	do	not	change	the	argument	variable	

4/17/18	 Matni,	CS16,	Sp18	 15	

Caution!			Inadvertent	Local	Variables	

•  Forgetting	the	ampersand	(&)	creates	a	call-by-value	parameter	
–  You	just	ensured	that	a	variable	will	remain	local	to	the	function	

	 	 	(when	your	intention	was	NOT	to	do	that!)	

•  This	is	a	hard	error	to	debug/find…	because	it	looks	right!	
– So,	be	careful…	

4/17/18	 Matni,	CS16,	Sp18	 16	

4/17/18	 Matni,	CS16,	Sp18	 17	

Command	Line	Arguments	with	C++	

•  In	C++	you	can	accept	command	line	arguments	
–  That	is,	when	you	execute	your	code,	you	can	pass	input	values	at	the	same	time	

•  These	are	arguments	(inputs)	that	are	passed	into	the	program		
	 	 	 	 	 	 	 	 	 	 	 	from	the	OS	command	line	

•  For	example,	from	the	Linux	OS	command	line:	
$./addThese	2	3	
		5	
$ 		

4/17/18	 Matni,	CS16,	Sp18	 18	

ß	You’re	passing	2	and	3	as	inputs	to	the	program	
ß  and	when	it’s	executed,	the	program	gives	you	
						its	output	(answer).	

Command	Line	Arguments	with	C++	

•  To	use	command	line	arguments	in	your	program,		
	 	 	 	 	you	must	add	2	special	arguments	to	the	main()	function	

•  Argument	#1:	
	 	 	The	number	of	elements	that	you	are	passing	in:	argc	

	
•  Argument	#2:	

	 	 	The	full	list	of	all	of	the	command	line	arguments	as	an	array:	*argv[]		
	 	 	This	is	an	array	pointer	…	never	mind	the	details,	but	more	on	those	in	a	later	class…	

4/17/18	 Matni,	CS16,	Sp18	 19	

Command	Line	Arguments	with	C++	

•  The	main()	function	header	should	be	written	as:	
	 	 	 	 	 	 	int	main(int	argc,	char*	argv[])	{	…	}	
	 	instead	of	 	 	int	main()	{	…	}	

	
•  In	the	OS,	to	execute	the	program,	the	command	line	form	should	be:	

	$	program_name		argument1	argument2	…	argumentn	
						example:	

	$	sum_of_squares	4	5	6	

4/17/18	 Matni,	CS16,	Sp18	 20	

4/17/18	 Matni,	CS16,	Sp18	 21	

DEMO:	
	
int	main	(int	argc,	char	*argv[])		
{		
	cout	<<	"There	are	"	<<	argc	<<	"	arguments	here:"	<<	endl;	
	cout	<<	"Let’s	print	out	all	the	arguments:"	<<	endl;	

	
	for	(int	i	=	0;	i	<	argc;	i++)	
	 	cout	<<	"argv["	<<	i	<<	"]	is	:	"	<<	argv[i]	<<	endl;	

	
	return	0;		

}	

argv[n]	Is	Always	a	Character	Type!	

•  While	argc	is	always	an	int	(it’s	calculated	by	the	compiler	for	you)…	
	…all	you	get	from	the	command-line	is	character	arrays	
–  This	is	a	hold-out	from	the	early	days	of	C	(i.e.	pre-C++)	
–  So,	the	data	type	of	argument	being	passed	is	always	an	array	of	characters	
(a.k.a.	a	C-string	–	more	on	those	later	in	the	quarter…)	

•  To	treat	an	argument	as	another	type	(like	a	number,	for	instance),		
you	have	to	first	convert	it	inside	your	program	

•  <cstdlib>	library	has	pre-defined	functions	to	help!	

4/17/18	 Matni,	CS16,	Sp18	 22	

What	If	I	Want	an	Argument	That’s	a	Number?	

•  Examples:	atoi()	and	atof()	
Convert	a	character	array	into	int	and	double,	respectively.	

Example:	

4/17/18	 Matni,	CS16,	Sp18	 23	

#include	<iostream>		
#include	<cstdlib>		
using	namespace	std;	
	
int	main(int	argc,	char	*argv[])		
{	

	int	num1	=	atoi(argv[1]);	
	int	num2	=	atoi(argv[2]);	
	int	add	=	num1	+	num2;	
	int	prod	=	num1	*	num2;	
	cout	<<	num3	<<	endl;	
	return	0;			

}	

argv[]	to	int	

argv[]	to	double	 These	functions	are	in	<cstdlib>	

This	is	the	only	way	that	we	
can	do	arithmetic	on	the	
first	2	arguments	

YOUR	TO-DOs	

q Do	Lab3	tomorrow	(due	Monday)	
q Do	HW5	by	next	Thursday	

q Visit	Prof’s	and	TAs‘	office	hours	if	you	need	help!	

q Eat	your	vegetables	

4/17/18	 Matni,	CS16,	Sp18	 24	

4/17/18	 Matni,	CS16,	Sp18	 25	

