
More	Flow	Control	
Functions	in	C++	

CS	16:	Solving	Problems	with	Computers	I	
Lecture	#4	

	
Ziad	Matni	

Dept.	of	Computer	Science,	UCSB	

Administrative	

•  CHANGED	T.A.	OFFICE/OPEN	LAB	HOURS!	
–  Thursday,	10	AM	–	12	PM	 	 	Muqsit	Nawaz	
–  Friday,	11	AM	–	1	PM 	 	 	 	Xiyou	Zhou	

•  Syllabus	is	updated	

•  Linux	Workshop	Next	Week!	
–  HFH	Conference	Room	(HFH	1132)	
–  Friday,	April	20th,	1:00	–	2:30	PM	

4/12/18	 Matni,	CS16,	Sp18	 2	

Lecture	Outline	

•  Multiway	Branching	and	the	switch	command	
•  Local	vs.	Global	Variables	

•  Pre-Defined	Functions	
•  User-Defined	Functions	
•  Void	Functions	

4/11/18	 Matni,	CS16,	Sp18	 3	

Nested	Loops	

•  The	body	of	a	loop	may	contain	any	kind	of		statement,		
	 	 	 	 	 	 	 	 	 	 	 	 	including	another	loop	

•  When	loops	are	nested,	all	iterations	of	the	inner	loop		
	 	 	 	 	are	executed	for	each	iteration	of	the	outer	loop	

•  ProTip:	Give	serious	consideration	to	making	the	inner	loop	a	function	call	
to	make	it	easier	to	read	your	program	
– More	on	functions	later…	

4/11/18	 Matni,	CS16,	Sp18	 4	

Example	of	a	Nested	Loop	
•  You	want	to	collect	the	total	grades	of	100	students	in	a	class	

•  Each	student	has	multiple	scores	
–  Example:	multiple	homeworks,	multiple	quizzes,	etc…	

•  You	go	through	each	student	–	one	at	a	time	–	and	get	their	scores	
–  You	calculate	a	sub-total	grade	for	each	student	

•  Then	after	collecting	every	student	score,	you	calculate	a	grand	total	grade	
of	the	whole	class	and	a	class	average	(grand	total	/	no.	of	students)	

4/11/18	 Matni,	CS16,	Sp18	 5	

			int	students(100);	
			double	grade(0),	subtotal(0),	grand_total(0);	
	
			for	(int	count	=	0;	count	<	students;	count++)		
			{	

	 	cout	<<	“Starting	with	student	number:	”	<<	count	<<	endl;	
	 	cout	<<	“Enter	grades.	To	move	to	the	next	student,	enter	a	negative	number.\n”	
	 	cin	>>	grade;	
	 	while	(grade	>=	0)										
	 	{	
	 	 	subtotal	=	subtotal	+	grade;	
	 	 	cin	>>	grade;	
	 	}	//	end	while	loop	
	 	cout	<<	“Total	grade	count	for	student	”	<<	count	<<	“is	”	<<	subtotal	<<	endl;	
	 	grand_total	=	grand_total	+	subtotal;	
	 	subtotal	=	0;	

			}	//	end	for	loop	
					
			cout	<<	“Average	grades	for	all	students=	”	<<	grand_total	/	students	<<	endl;	

Example	of	a	
Nested	Loop	

4/11/18	 Matni,	CS16,	Sp18	 6	

Multiway	Branching	
•  Nesting	(embedding)	one	if/else	statement	in	another.	

	

if	(count	<	10)		
{	
	 	if	(x	<	y)	
	 	{	
	 	 	cout	<<	x	<<	"	is	less	than	"	<<	y;	
	 	}	
	 	else	
	 	{	
	 	 	cout	<<	y	<<	"	is	less	than	"	<<	x;	
	 	}	
}	

4/11/18	 Matni,	CS16,	Sp18	 7	

Note	the	tab	indentation	at	each	level	of	nesting.	

Defaults	in	Nested	IF/ELSE	Statements	

•  When	the	conditions	tested	in	an	if-else-statement	are	mutually	exclusive,	
the	final	if-else	can	sometimes	be	omitted	

	
EXAMPLE:	
	

4/11/18	 Matni,	CS16,	Sp18	 8	

if	(guess	>	number)	
	cout	<<	“Too	high.”;	

else	if	(guess	<	number)	

	cout	<<	“Too	low.”;	
else	if	(guess	==	number)	

	cout	<<	“Correct!”;	

if	(guess	>	number)	
	cout	<<	"Too	high.";	

else	if	(guess	<	number)	

	cout	<<	"Too	low.”;	
else	cout	<<	"Correct!";	

i.e.	All	other	possibilities	

A	Better	Way…	Using	switch	
An	alternative	for	constructing		

multi-way	branches	

switch	(variable)		
{	

	case	variable_value1:	
	 	statements;	
	 	break;	

	
	case	variable_value2:	
	 	statements;	
	 	break;	

	
	… 	… 	…	

	
	default:	
	 	statements;	
	}	

	
4/11/18	 Matni,	CS16,	Sp18	 9	

“break”	statement	is	important		

–	you	cannot	forget	it!	

The	Controlling	Statement	

•  A	switch	statement's	controlling	statement	must	return	one	
of	these	basic	types:	
– A	bool	value	
– An	int	type	
– A	char	type	

•  switch	will	not	work	with	strings	in	the	controlling	statement.	

4/11/18	 Matni,	CS16,	Sp18	 10	

Can	I	Use	the	break	Statement	in	a	Loop?	

•  Yes,	technically,	the	break	statement	can	be	used	to	exit	a	loop	
(i.e.	force	it	to)	before	normal	termination	

•  But	it’s	not	good	design	practice!	
–  Its	use	is	considered	“sloppy”	and	unprofessional	
–  In	this	class,	do	NOT	use	it	outside	of	switch	

4/11/18	 Matni,	CS16,	Sp18	 11	

Note	About	Blocks	

•  Recall:	A	block	is	a	section	of	code	enclosed	by	{…}	braces	

•  Variables	declared	within	a	block,	are	local	to	the	block	
– An	exclusivity	feature	
– These	variable	are	said	to	have	the	block	as	their	scope.	
– They	can	used	inside	this	block	and	nowhere	else!	

•  Variable	names	declared	inside	the	block		
	 	 	 	 	 	 	 	 	 	cannot	be	re-used	outside	the	block	

4/11/18	 Matni,	CS16,	Sp18	 12	

Local	vs.	Global	Variables	

•  Local	variables	only	work	in	a	specified	block	of	statements	
–  If	you	try	and	use	them	outside	this	block,	they	won’t	work	

•  Global	variables	work	in	the	entire	program	

•  There	are	standards	to	each	of	their	use	
–  Local	variables	are	much	preferred	as	global	variables	can	cause	conflicts	
in	the	program	

–  Sometimes	we	want	to	define	constants	and	use	them	as	globals	

4/11/18	 Matni,	CS16,	Sp18	 13	

Local	vs.	Global	Variables	–	Example		

4/11/18	 Matni,	CS16,	Sp18	 14	

#include	<iostream>	
using	namespace	std;	
	
int	main()	
{	
	int	age(0);	
	for	(int	c	=	0;	c	<	10;	c++)	
	{	
	 	cout	<<	age*c	<<	endl;	
	 	age	+=	(2*c	+	4);	
	}	
	return	0;	

}	

#include	<iostream>	
using	namespace	std;	
	
int	age(0);	
int	main()	
{	
	for	(int	c	=	0;	c	<	10;	c++)	
	{	
	 	cout	<<	age*c	<<	endl;	
	 	age	+=	(2*c	+	4);	
	}	
	return	0;	

}	

Local	to	main()	

Globally	declared	

Local	to	the	for-loop	

Global	Constants	–	Example		

4/11/18	 Matni,	CS16,	Sp18	 15	

#include	<iostream>	
#include	<math>	
using	namespace	std;	
	
const	double	PI=3.14159;	
int	main()	
{	

	double	angle=0;	
	while	(angle	<=	2*PI)	
	{	
	 	cout	<<	"sin("	<<	angle	<<	")	=	";	
	 	cout	<<	sin(angle);	
	 	angle	+=	PI/4;	
	}	
	return	0;	

}	

Globally	declared	

Exercise	
#include	<iostream>	
using	namespace	std;	
int	main()		
{	

	int	k;	
	for	(int	j	=	0;	j	<	3;	j++)	
	{	

	 	cout	<<	“CS	”;	
	 	while	(______________)	
	 	{	

	 	 	k--;	
	 	}	
	 	cout	<<	“.”;	
	}	
	cout	<<	endl;		//same	as	“\n”	
	return	0;	

}	

Matni,	CS16,	Sp18	 16	

Complete	the	program	to	the	left	if	
you	want	the	outputs	to	be:	
	
CS	98.CS	98.CS	98.	
	
(there’s	a	newline	character	at	the	end)	

	

cout	<<	k;	

k	=	9;	

k	>	7	

4/11/18	 Matni,	CS16,	Sp18	 17	

FUNCTIONS	in	C++	

Predefined	Functions	in	C++	

•  C++		comes	with	“built-in”	libraries	of	predefined	functions	

•  Example:		sqrt	function	(found	in	the	library	cmath)	
–  Computes	and	returns	the	square	root	of	a	number	

the_root	=	sqrt(9.0);	
–  The	number	9	is	called	the	argument	

•  Can	variable	the_root	be	either	int	or	double?	

4/11/18	 Matni,	CS16,	Sp18	 18	

Notes	on	the	cmath	Library	

•  Standard	math	library	in	C++	
•  Contains	several	useful	math	functions,	like		
cos(),	sin(),	exp(),	log(),	pow(),	sqrt()	

•  To	use	it,	you	must	import	it	at	the	start	of	your	program	
	 	 	#include	<cmath>	
– You	can	find	more	information	on	this	library	at:	
http://www.cplusplus.com/reference/cmath/		

		
4/11/18	 Matni,	CS16,	Sp18	 19	

Other	Predefined	cmath	Functions	

•  pow(x,	y)	 	---		double	value	=	pow(2,	-8);	
– Returns	2-8	,	a	double	value	(value	=	0.00390625)	
– Arguments	are	of	type	double	

•  sin(x),	cos(x),	tan(x),	etc…					---		double	value	=	sin(1.5708);	
– Returns	sin(π/2)	(value	=	1)	–	note	it’s	in	radians	
– Argument	is	of	type	double	

4/11/18	 Matni,	CS16,	Sp18	 20	

Other	Predefined	cmath	Functions	

•  abs(x)	 	---		int	value	=	abs(-8);	
– Returns	absolute	value	of	argument	x	
– Return	value	is	of	type	int	
– Argument	is	of	type	int	

•  fabs(x)					---		double	value	=	fabs(–8.0);	
– Also	returns	absolute	value	of	argument	x	
– Return	value	is	of	type	double	
– Argument	is	of	type	double	

4/11/18	 Matni,	CS16,	Sp18	 21	

Random	Number	Generation:	Step	1	

•  Not	true-random,	but	pseudo-random	numbers.	
	 	Must 	#include	<cstdlib>	

	#include	<ctime>	

•  First,	seed	the	random	number	generator	(only	need	to	do	this	once)	
	srand(time(0)); 	//place	inside	main()	
	

–  time()	is	a	pre-defined	function	in	the	ctime	library:	gives	current	system	time		
(it	gives	the	current	system	time)	

–  It’s	used	here	because	it	generates	a	distinctive	enough	seed,	so	that	rand()	
generates	a	“good	enough”	random	number.	

4/11/18	 Matni,	CS16,	Sp18	 22	

Random	Number	Generation:	Step	2	

•  Next,	use	the	rand()	function,	which	returns	a	random	integer	that	is	
greater	than	or	equal	to	0	and	less	than	RAND_MAX		
(a	library-dependent	value,	but	is	at	least	32767)	

	int	r	=	rand();	

•  But	what	if	you	want	to	generate	random	numbers	in	other	ranges?	
Example,	between	1	and	6?	

	

4/11/18	 Matni,	CS16,	Sp18	 23	

Random	Numbers	

•  Use	%	and	+	to	scale	to	the	number	range	you	want	

•  For	example	to	get	a	random	number	bounded		
	 	 	from	1	to	6	to	simulate	rolling	a	six-sided	die:	

	int	die	=	(rand()	%	6)	+	1;	
	

4/11/18	 Matni,	CS16,	Sp18	 24	

Programmer-Defined	Functions	

•  In	C++,	you	can	create	your	own	functions	
–  You	can	have	them	“do	things”	based	on	input	arguments	
–  These	functions	can	also	return	a	value	or	NOT	

•  You	have	to	declare	functions	as	“types”	
–  That	is,	what	“type”	of	data	they	return	(if	any)	
–  Example	(here,	x	and	y	are	the	input	arguments):	
double	functionX(int	x,	int	y) 	 	 	returns	a	double	
string	functionX(int	x,	int	y) 	 	 	returns	a	string	
void	functionX(int	x,	int	y) 	 	 	 	returns	nothing	
	

	4/11/18	 Matni,	CS16,	Sp18	 25	

Programmer-Defined	Functions	
•  There	are	2	necessary	components	for	using	functions	in	C++	

•  Function	declaration	(a.k.a	function	prototype)	
–  Just	like	declaring	variables	
–  Must	be	placed	outside	the	main(),	usually	just	before	it	
–  Must	be	placed	before	the	function	is	defined	&	called	

•  Function	definition	
–  This	is	where	you	define	the	function	itself	(all	the	details	go	here)	
–  Must	be	place	outside	the	main()	
–  Can	be	before	main()	or	after	it,	often	placed	after	it	

4/11/18	 Matni,	CS16,	Sp18	 26	

Block	Placements	for	Functions	

4/11/18	 27	

Function	Declaration	

main()	
where	the	function	gets	called	

Function	Definition	

Function	Declaration	

main()	
where	the	function	gets	called	

Function	Definition	

main()	
where	the	function	gets	called	

Function	Definition	AND	
Declaration	(in	one)	

main()	
where	the	function	gets	called	

Function	Definition	 Function	Declaration	

main()	
where	the	function	gets	called	

Function	Definition	

Most	widely-used	scheme,	
esp.	with	large	programs	

Function	Declaration	

•  Shows	how	the	function	is	called	from	main()	or	from	other	functions	

•  Must	appear	in	the	code	before	the	function	can	be	called	

•  Syntax:	
Type_returned	Function_Name(Parameter_List);	
//Comment	describing	what	function	does	

	

E.g:	
double	interestOwed(double	principle,	double	rate);	
//Calculates	the	interest	owed	on	a	loan	

4/11/18	 Matni,	CS16,	Sp18	 28	

;
Needed	for	
declaration	
statement	

Function	Definition	
•  Describes	how	the	function	does	its	task	
•  Can	appear	before	or	after	the	function	is	called	

•  Syntax:		
Type_returned		Function_Name(Parameter_List)	
			{	
									//code	to	make	the	function	work	
			}	

4/11/18	 Matni,	CS16,	Sp18	 29	

Example	of	a	Simple	Function	in	C++	
#include	<iostream>	
using	namespace	std;	
	
int	sum2nums(int	num1,	int	num2);	//	returns	the	sum	of	2	numbers	
	
int	main	()		
{	

	int	a(3),	b(5);	
	int	sum	=	sum2nums(a,	b);	
	cout	<<	sum	<<	endl;	
	return	0;		

}	
	
int	sum2nums(int	num1,	int	num2)		
{	

	return	(num1	+	num2);	
}	
4/11/18	 Matni,	CS16,	Sp18	 30	

Call	

Definition	

void	Functions	

•  Sometimes,	we	want	design	subtasks	to	be	implemented	as	functions.	
–  Repetition	involved,	like	printing	some	variable	over	and	over	again	
– We	may	not	want	to	return	anything	

4/11/18	 Matni,	CS16,	Sp18	 31	

void	Function:	Simple	Example	

•  Let’s	say,	you	want	to	pass	a	number	to	a	function	and	then	have	it	
always	print	out	its	triple	value	(i.e.	var	*	3)	

	
void	tripleIt(double	number)	
{	
	cout	<<	number	<<	"x	3	=	"	<<	number*3	<<	endl;	
	return;	

}	
	
NOTE:	the	‘return’	instruction	here	is	OPTIONAL	(why?)	

4/11/18	 Matni,	CS16,	Sp18	 32	

Calling	void	Functions	

•  void-function	calls	are,	essentially,	executable	statements	
– They	do	not	need	to	be	part	of	another	statement	
– They	end	with	a	semi-colon	

•  Example	from	previous	slide:	
 Call	it	inside	of		main()	with:				tripleIt(32.5);	
	 	 	 	 	NOT	with:						cout	<<	tripleIt(32.5);

4/11/18	 Matni,	CS16,	Sp18	 33	

This	distinction	is	important	and	a	
typical	rookie	mistake	to	make!!!	

Will	not	compile!!!!	

void	Functions:	To	Return	or	Not	Return?	
•  In	void	functions,	we	need	“return”	to	indicate	the	end	of	the	function	

–  Is	it	strictly	necessary	for	that?	 	 	No,	it’s	optional	

•  Can	we	use	“return”	to	signal	an	“interrupt”	to	the	function…	
–  …and	end	it	prematurely? 	 	 	 	Yes	you	can	do	that!	

•  Example:	What	if	a	branch	of	an	if-else	statement	requires		
that	the	function	ends	to	avoid	producing	more	output,	or	creating	a	
mathematical	error?	
–  See	example	on	next	page	of	a	void	function	that	avoids	division	by	zero	with	a	
return	statement	

4/11/18	 Matni,	CS16,	Sp18	 34	

4/11/18	 35	

The	main	Function	in	C++	:	
Why	is	it	an	int	type,	not	a	void	type???	

•  The	main	function	in	a	program	is	used	like	a	void	function	
–  So	why	do	we	have	to	end	the	program	with	a	return	statement?	
–  And	why	isn’t	it	DEFINED	as	a	void	function?	

•  The	main	function	is	defined	to	return	a	value	of	type	int,		
	 	 	 	 	 	 	 	 	 	 	 	 	 	therefore	a	return	is	needed	
–  It’s	a	matter	of	what	is	“legal”	and	“not	legal”	in	C++	
–  void	main	()	is	not	legal	in	C++	!!		(this	ain’t	Java)	
– Most	compilers	will	not	accept	a	void	main	(none	of	the	ones	we’re	using,	anyway…)	
–  Solution?	Stick	to	what’s	legal:	it’s	ALWAYS	int	main	()	

4/11/18	 Matni,	CS16,	Sp18	 36	

37	

#include	<iostream>	
#include	<cstdlib>		
#include	<ctime>	
using	namespace	std;	
	

int	main	()		
{	

	srand(time(0));	
	int	throw_times,	die;	
		
	cout	<<	“How	many	times	shall	we	throw	the	die?!\n”;	

	cin	>>	throw_times;	
		
	for	(int	i=0;	i	<	throw_times;	i++)		

	{	
	 	 	die	=	(rand()	%	6)	+	1;	
	 	 	cout	<<	“We	threw	a	”	<<	die	<<	endl;		
	}	

	return	0;	
}	

What	Does	This	
Program	Do?	

YOUR	TO-DOs	

q  Finish	Lab2	by	next	Monday	
q  Prepare	Lab3	for	next	Monday	

q  description	will	be	put	up	over	the	weekend	
q  Do	HW4	by	next	Tuesday	

q  Visit	Prof’s	and	TAs‘	office	hours	if	you	need	help!	

q  Reverse	global	warming	
q  Bonus	points	for	ending	world	hunger	

4/11/18	 Matni,	CS16,	Sp18	 38	

4/11/18	 Matni,	CS16,	Sp18	 39	

