More Flow Control
Functions in C++

CS 16: Solving Problems with Computers |
Lecture #4

Ziad Matni
Dept. of Computer Science, UCSB

Administrative

* CHANGED T.A. OFFICE/OPEN LAB HOURS!
— Thursday, 10 AM - 12 PM Mugsit Nawaz
— Friday, 11 AM -1 PM Xiyou Zhou

e Syllabus is updated

* Linux Workshop Next Week!
— HFH Conference Room (HFH 1132)
— Friday, April 20th, 1:00 - 2:30 PM

4/12/18 Matni, CS16, Sp18

Lecture Outline

Multiway Branching and the switch command

Local vs. Global Variables

Pre-Defined Functions

User-Defined Functions

Void Functions

4/11/18 Matni, CS16, Sp18

Nested Loops

* The body of a loop may contain any kind of statement,
including another loop

* When loops are nested, all iterations of the inner loop
are executed for each iteration of the outer loop

* ProTip: Give serious consideration to making the inner loop a function call
to make it easier to read your program

— More on functions later...

4/11/18 Matni, CS16, Sp18 4

Example of a Nested Loop
* You want to collect the total grades of 100 students in a class

* Each student has multiple scores
— Example: multiple homeworks, multiple quizzes, etc...

* You go through each student — one at a time — and get their scores
— You calculate a sub-total grade for each student

* Then after collecting every student score, you calculate a grand total grade
of the whole class and a class average (grand total / no. of students)

4/11/18 Matni, CS16, Sp18

Example of a

int students(100);

double grade(®), subtotal(®), grand total(9); NEStEd LOO,D

for (int count = 0; count < students; count++)

{

cout << “Starting with student number: »” << count << endl;
cout << “Enter grades. To move to the next student, enter a negative number.\n”
cin >> grade;
while (grade >= 0)
{
subtotal = subtotal + grade;
cin >> grade;
} // end while loop
cout << “Total grade count for student ” << count << “is ” << subtotal << endl;
grand_total = grand_total + subtotal;
subtotal = 0;

} // end for loop

cout << “Average grades for all students= »” << grand_total / students << endl;

4/11/18 Matni, CS16, Sp18 6

Multiway Branching

* Nesting (embedding) one if/else statement in another.

if (count < 10)

{) Note the tab indentation at each level of nesting.
HEIEE (X E TRy
{
cout << x << " is less than " << y;
}
else
{
cout << y << " 1is less than " << x;
}
}

4/11/18 Matni, CS16, Sp18 7

Defaults in Nested IF/ELSE Statements

 When the conditions tested in an if-else-statement are mutually exclusive,
the final if-else can sometimes be omitted

EXAMPLE:
(guess > number) (guess > number)
cout << “Too high.”; cout << "Too high.";
(guess < number) (guess < number)
cout << “Too low.”; cout << "Too low.”;
(guess == number) cout << "Correct!";

cout << “Correct!”; R\\

4/11/18 Matni, CS16, Sp18

i.e. All other possibilities

switch (variable) A Better Way... Using switch

{ . :
An alternative for constructing
multi-way branches

Deimo!

case variable valuel:
statements;
break;

case variable value2:
statements;
break;

default:
statements;

4/11/18 Matni, CS16, Sp18 9

The Controlling Statement

A switch statement's controlling statement must return one
of these basic types:

— A bool value
— An int type
— A char type

* switch will not work with strings in the controlling statement.

4/11/18 Matni, CS16, Sp18 10

Can | Use the break Statement in a Loop?

* Yes, technically, the break statement can be used to exit a loop
(i.e. force it to) before normal termination

e Butit’s not good design practice!
— Its use is considered “sloppy” and unprofessional

— In this class, do NOT use it outside of switch

4/11/18 Matni, CS16, Sp18 11

Note About Blocks

* Recall: A block is a section of code enclosed by {...} braces

e Variables declared within a block, are local to the block
— An exclusivity feature
— These variable are said to have the block as their scope.
— They can used inside this block and nowhere else!

e Variable names declared inside the block
cannot be re-used outside the block

4/11/18 Matni, CS16, Sp18

12

Local vs. Global Variables

* Local variables only work in a specified block of statements
— If you try and use them outside this block, they won’t work

 Global variables work in the

 There are standards to each of their use

— Local variables are much preferred as global variables can cause conflicts
in the program

— Sometimes we want to define constants and use them as globals

4/11/18 Matni, CS16, Sp18 13

', T
Local vs. Global Variables — Example Demo!

#include <iostream> #include <iostream>
using namespace std; using namespace std;
int main() int age(9);
{ int main()
int age(9); {
for (int c'= @; c < 10; c++) for (int c = 0; c < 10; c++)
{ {
cout << age*c << endl; cout << age*c << endl;
age += (2*c + 4); age += (2*c + 4);
} }
return 0; return 9;
} }

4/11/18 Matni, CS16, Sp18 14

Global Constants — Example

#include <iostream>
#include <math>

using namespace std;

const double PI=3.14159;
int main()
{
double angle=0;
while (angle <= 2*PI)
{
cout << "sin(" << angle << ") = ";
cout << sin(angle);
angle += PI/4;
}

return 0;

4/11/18 Matni, CS16, Sp18

#tinclude <iostream>
using namespace std;
int main()

{

int k;
for (int j = 0; j < 3; j++)
{

k = 9;

cout << “CS ”;

while (k >7)

{

cout << k;
kK--3

}

cout << “.”;

}

cout << endl; //same as “\n”
return 0;

Exercise

Complete the program to the left if
you want the outputs to be:

CS 98.CS 98.CS 98.

(there’s a newline character at the end)

Matni, CS16, Sp18 16

4/11

/18

FUNCTIONS in C++

Matni, CS16, Sp18

Predefined Functions in C++

e C++ comes with “built-in” libraries of predefined functions

 Example: sgrt function (found in the library cmath)

— Computes and returns the square root of a number
the _root = sqrt(9.0);
— The number 9 is called the argument

e Canvariable the_root be either int or double?

4/11/18 Matni, CS16, Sp18

18

Notes on the cmath Library

e Standard math library in C++
e Contains several useful math functions, like

cos(), sin(), exp(), log(), pow(), sqrt()

* To use it, you must import it at the start of your program

#include <cmath>

— You can find more information on this library at:
http://www.cplusplus.com/reference/cmath/

4/11/18 Matni, CS16, Sp18

19

Other Predefined cmath Functions

e pow(x,y) --- double value = pow(2, -8);
—Returns 28, a double value (value = 0.00390625)
— Arguments are of type double

* sin(x), cos(x), tan(x), etc... --- double value = sin(1.5708);
—Returns sin(mw/2) (value = 1) — note it’s in radians
— Argument is of type double

4/11/18 Matni, CS16, Sp18 20

Other Predefined cmath Functions

* abs(x) --- int value = abs(-8);
— Returns absolute value of argument x
— Return value is of type int
— Argument is of type int

* fabs(x) --- double value = fabs(-8.90);
— Also returns absolute value of argument x
— Return value is of type double
— Argument is of type double

4/11/18 Matni, CS16, Sp18

21

Random Number Generation: Step 1

* Not true-random, but pseudo-random numbers.
Must #include <cstdlib>
#include <ctime>

* First, seed the random number generator (only need to do this once)
srand(time(0)); //place inside main()

— time() is a pre-defined function in the ctime library: gives current system time
(it gives the current system time)

— It’s used here because it generates a distinctive enough seed, so that rand()
generates a “good enough” random number.

4/11/18 Matni, CS16, Sp18 22

Random Number Generation: Step 2

* Next, use the rand() function, which returns a random integer that is
greater than or equal to 0 and less than RAND _MAX
(a library-dependent value, but is at least 32767)

int r = rand();

e But what if you want to generate random numbers in other ranges?
Example, between 1 and 67

4/11/18 Matni, CS16, Sp18

23

Random Numbers

* Use % and + to scale to the number range you want

* For example to get a random number bounded

from 1 to 6 to simulate rolling a six-sided die:

int die = (rand() % 6) + 1;

4/11/18 Matni, CS16, Sp18

Demo!

24

Programmer-Defined Functions

* In C++, you can create your own functions

— You can have them “do things” based on input arguments
— These functions can also return a value or NOT

* You have to declare functions as “types”
— That is, what “type” of data they return (if any)
— Example (here, x and y are the input arguments):
double functionX(int x, int y) returns a double

string functionX(int x, int y) returns a string
void functionX(int x, int y) returns nothing

4/11/18 Matni, CS16, Sp18 25

Programmer-Defined Functions

 There are 2 necessary components for using functions in C++

* Function declaration (a.k.a function prototype)
— Just like declaring variables
— Must be placed outside the main(), usually just before it
— Must be placed before the function is defined & called

* Function definition
— This is where you define the function itself (all the details go here)
— Must be place outside the main()
— Can be before main() or after it, often placed after it

4/11/18 Matni, CS16, Sp18

26

Block Placements for Functions
_ Function Declaration | | Function Declaration
| Function Definition__|

Function Definition

main()

where the function gets called . .
main() main()
where the function gets called where the function gets called

Function Definition

Most widely-used scheme,
esp. with large programs

main()

N O I O K ' where the function gets called where the function gets called

e
Function Definition Function Declaration

Function Definition

main()

4/11/18 27

Function Declaration

e Shows how the function is called from main() or from other functions

* Must appear in the code before the function can be called

* Syntax: Needed for
Type_returned Function_ Name(Parameter List); ; declaration
//Comment describing what function does statement

E.g:

double interestOwed(double principle, double rate);
//Calculates the interest owed on a loan

4/11/18 Matni, CS16, Sp18 28

Function

e Describes how the function does its task
* Can appear before or after the function is called

* Syntax:

{
}

Function Name(Parameter List)

//code to make the function work

4/11/18 Matni, CS16, Sp18

29

Example of a Simple Function in C++

#include <iostream>
using namespace std; oed@

int sum2nums(int numl, int num2); // returns the sum of 2 numbers

int main ()

{
int a(3), b(5);
int sum = sum2nums(a, b);
s ok ok i
return 9;
}

int sum2nums(int numl, int num2)
{

return (numl + num2);

}

4/11/18 Matni, CS16, Sp18 30

void Functions

* Sometimes, we want design subtasks to be implemented as functions.

— Repetition involved, like printing some variable over and over again
— We may not want to return anything

// void function example
#include <iostream>
using namespace std;

void printmessage ()
{

cout << "I'm a function!";

}

int main ()
{

printmessage ();

}

4/11/18 Matni, CS16, Sp18

void Function: Simple Example

* Let’s say, you want to pass a number to a function and then have it
always print out its triple value (i.e. var * 3)

void triplelt(double number)
i

cout << number << "x 3 = " << number*3 << endl;
return;

NOTE: the ‘return’ instruction here is OPTIONAL (why?)

4/11/18 Matni, CS16, Sp18 32

Calling void Functions

» void-function calls are, essentially, executable statements
— They do not need to be part of another statement
— They end with a semi-colon

 Example from previous slide:
Call it inside of main() with: tripleIt(32.5);

NOT with: cout << tripleIt(32.5);

<— Will not compile!!!!

4/11/18 Matni, CS16, Sp18 33

void Functions: To Return or Not Return?

* In void functions, we need “return” to indicate the end of the function
— lIs it strictly necessary for that? No, it’s optional

e Can we use “return” to signal an “interrupt” to the function...
— ...and end it prematurely? Yes you can do that!

 Example: What if a branch of an if-else statement requires
that the function ends to avoid producing more output, or creating a
mathematical error?

— See example on next page of a void function that avoids division by zero with a
return statement

4/11/18 Matni, CS16, Sp18 34

4/11/18

Use of return in a void Function

Function Declaration

void ice_cream_division(int number, double total_weight);
//0utputs instructions for dividing total_weight ounces of
//ice cream among number customers.

//If number is 0, nothing is done.

Function Definition

//Definition uses iostream:
void ice_cream_division(int number, double total_weight)

{

using namespace std;
double portion;

1f (number == 0) If number is 0, then the
return: —e——""__ function execution ends here.

portion = total_weight/number;

cout.setf(ios::fixed);

cout.setf(ios::showpoint);

cout.precision(2);

cout << "Each one receives
<< portion << " ounces of ice cream.'

<< endl;

35

The main Function in C++ :
Why is it an int type, not a void type???

* The main function in a program is used like a void function

— So why do we have to end the program with a return statement?
— And why isn’t it DEFINED as a void function?

* The main function is defined to return a value of type int,
therefore a return is needed

— It’s a matter of what is “legal” and “not legal” in C++

— void main () is not legal in C++ !! (this ain’t Java)

— Most compilers will not accept a void main (none of the ones we’re using, anyway...)
— Solution? Stick to what’s legal: it’s ALWAYS int main ()

4/11/18 Matni, CS16, Sp18

36

#include <iostream>
#include <cstdlib>
#include <ctime>

using namespace std;

int main ()

{
srand(time(9));

int throw_times, die;

cout << “How many times shall we throw the die?!\n”;

cin >> throw_times;

for (int i=0; i < throw_times; i++)

{

die = (rand() % 6) + 1;

cout << “We threw a ” << die << endl;
}
return 0;

What Does This
Program Do?

37

YOUR TO-DOs

d Finish Lab2 by next Monday
 Prepare Lab3 for next Monday

L description will be put up over the weekend

Do HW4 by next Tuesday
O Visit Prof’s and TAs’ office hours if you need help!

O Reverse global warming
O Bonus points for ending world hunger

4/11/18 Matni, CS16, Sp18

38

4/11/18

</LECTURE>

Matni, CS16, Sp18

39

