
Compiling	C++	Programs	
Flow	Control	in	C++	
CS	16:	Solving	Problems	with	Computers	I	

Lecture	#3	
	

Ziad	Matni	
Dept.	of	Computer	Science,	UCSB	

Lecture	Outline	

•  Compiling	Programs	in	C++	
•  Input	and	Output	Streams	
•  Simple	Flow	of	Control	
•  IF/ELSE	Statements	
•  Loops	(While	;	Do-While	;	For)	
•  Multiway	Branching	and	the	switch	command	
	

4/10/18	 Matni,	CS16,	Sp18	 2	

Compile	vs.	Run	Time	Errors	
Compile	Time	Errors	
•  Errors	that	occur	during	compilation	of	a	program.	

Run	Time	Errors	
•  Errors	that	occur	during	the	execution	of	a	program	
•  Runtime	errors	indicate	bugs	in	the	program	(bad	design)	or	unanticipated	

problems	(like	running	out	of	memory)	
•  Examples:	

–  Dividing	by	zero	
–  Bad	memory	calls	in	the	program	(bad	memory	address)	
–  Segmentation	errors	(memory	over-flow)	

4/10/18	 Matni,	CS16,	Sp18	 3	

Compiling	Programs	in	C++	
(on	a	UNIX/Linux	OS	Machine,	like	those	in	CSIL)	

•  Use	the	built-in	compiler	program 	 	g++	
•  At	the	prompt,	do	the	following:	
$	g++	<source	code>	-o	<object	code>	

•  Where:	
–  Source	code 	=	Your	C++	program	file.	Always	has	the	extension	.cpp	
– Object	code 	=	What	the	output	executable	file	will	be	called.	

•  The	default	version	of	C++	used	by	our	CSIL	g++	is	ver.	14.	
–  You	can	force	the	compiler	to	use	another	version	with	the	–std	option	(e.g.	–std=c++11)		

4/10/18	 Matni,	CS16,	Sp18	 4	

Compiling	Programs	in	C++	
(on	a	UNIX/Linux	OS	Machine,	like	those	in	CSIL)	

•  For	example:	
$	g++	myProg.cpp	-o	myProg		

•  Now,	to	run	your	program,	you	run	the	executable	(object	file),	like	this:	
$./myProg	

–  The	“./”	tells	the	Linux	OS	that	the	file	“myProg”	is	found	in	the	current	directory	

•  Make	sure	that	you	are	in	the	correct	directory	where	your	program	is!	
–  For	example,	when	you	first	log-in,	you	will	be	in	your	“home”	directory	
–  If	you	program	lies	within	a	directory	called	“myPrograms”,	for	example,	do	this	before	you	

compile	anything:	
$	cd	myPrograms	

–  “cd”	tells	the	Linux	OS	that	you	want	to	“change	directory”	to	myPrograms	
	
4/10/18	 Matni,	CS16,	Sp18	 5	

Can	I	Access	These	CSIL	Machines	Remotely?	
•  Yes!	Know	your	username	and	password	for	CSIL	before	hand	
•  Let’s	say	they’re	“jimbo”	and	“i<3cs16”,	respectively	

•  You	will	now	use	that	information	to	remotely	log	into	a	CSIL	machine	
–  These	are	called	csil-<number	between	01	and	42>	
–  For	example:	csil-10	

4/10/18	 Matni,	CS16,	Sp18	 6	

Can	I	Access	These	CSIL	Machines	Remotely?	
•  Using	a	Mac	–	it’s	easy:	

–  Open	up	Terminal	and	do	the	following:	
$	ssh	jimbo@csil-10.cs.ucsb.edu	
–  Answer	whatever	questions	come	up,	like	your	password,	etc…	
–  You	are	now	logged	into	that	CSIL	machine!	Do	your	work	and	then	remember	to	exit	using	
$	exit	

•  Using	a	Windows	machine	–	it’s	easy,	but	needs	some	initial	setups:	
–  Download	putty	–	a	free	program	---OR---	set	up	you	Windows	10	machine	for	bash-shell	and	run	that	

instead	
•  Google	how	to	do	that	–	it’s	akin	to	Mac’s	Terminal	application	

–  Do	the	same	exact	steps	as	with	the	Mac	instructions	

4/10/18	 Matni,	CS16,	Sp18	 7	

Inputs	and	Outputs	

4/10/18	 Matni,	CS16,	Sp18	 8	

Data	Streams	-	Definitions	

•  Data	stream:	
– Typically	in	the	form	of	characters	or	numbers	

•  Input	stream:	
– Typically	(standard)	originates	at	the	keyboard,	or	from	a	file	

•  Output	stream:		
– Destination	is	typically	(standard)	the	display,	or	other	times	to	a	file	

4/10/18	 Matni,	CS16,	Sp18	 9	

data	for	the	program	to	use	

the	program’s	output	

a	sequence	of	data	

Examples	of	Use	(cout)	
	

cout	<<	number_of_bars	<<	“	candy	bars\n”;	
	

•  This	sends	two	items	to	the	monitor	(display):	
–  The	value	of	number_of_bars	
–  The	quoted	string	of	characters	"	candy	bars\n”	(note	the	starting	space)	
–  The	‘\n’	causes	a	new	line	to	be	started	following	the	‘s’	in	bars	

•  A	new	insertion	operator	(<<)	must	be	used	for	each	item	of	output		

•  Note:	do	not	use	single	quotes	for	the	strings	

4/10/18	 Matni,	CS16,	Sp18	 10	

Escape	Sequences	
•  Tell	the	compiler	to	treat	certain	

characters	in	a	special	way	
–  \	(back-slash)	is	the	escape	character	

•  Example:	To	create	a	newline	in	the	
output,	we	use	
–  \n	–		as	in,	cout	<<	"\n";	
–  An	alternative:		cout	<<	endl;	

•  Other	escape	sequences:	
–  \t	 	 	horizontal	tab	character	
–  \\ 	 	backslash	character	
–  \”	 	 	quote	character	
–  \a 	 	audible	bell	character	

For	a	more	complete	list	of	escape	
sequences	in	C++,	see:	
http://en.cppreference.com/	
w/cpp/language/escape		

4/10/18	 Matni,	CS16,	Sp18	 11	

Formatting	Decimal	Places	

A	common	requirement	when	displaying	numbers.	
EXAMPLE:	Consider	the	following	statements:	

double	price	=	78.5;	
cout	<<	"The	price	is	$"	<<	price	<<	endl;	

		
•  Do	you	want	to	print	it	out	as:	

The	price	is	$78.5	
The	price	is	$78.50	
The	price	is	$7.850000e01	

4/10/18	 Matni,	CS16,	Sp18	 12	

Likely,	you	want	the	2nd	option	
You	have	to	DEFINE	that	format	ahead	of	time	

Note:	endl	is	the	same	as	“\n”	
	and	is	part	of	<iostream>	

Formatting	Decimal	Places	with	cout	
•  To	specify	fixed	point	notation,	use:	

cout.setf(ios::fixed)	
•  To	specify	that	the	decimal	point	will	always	be	shown	

cout.setf(ios::showpoint)	
•  To	specify	that	n	decimal	places	will	always	be	shown	

		 		 		cout.precision(n)		 	---	where	n	can	be	1,	2,	3,	etc…	
	
EXAMPLE:	

double	price	=	78.5;	
cout.setf(ios::fixed);	
cout.setf(ios::showpoint);	
cout.precision(2);	
cout	<<	“The	price	is	”	<<	price	<<	endl;		

4/10/18	 Matni,	CS16,	Sp18	 13	

You	usually	only	need	to	do	this	ONCE	
in	a	program,	unless	you	decide	to	

change	the	format	later	on	

Inputs	via	cin	
•  cin	is	an	input	stream	bringing	data	from	the	keyboard	
•  The	extraction	operator	(>>)	removes	data	to	be	used	and	can	be	used	

more	than	once	

EXAMPLE:	
cout	<<	"Enter	the	number	of	bars	in	a	package\n";	
cout	<<	"	and	the	weight	in	ounces	of	one	bar.\n";	
cin	>>	number_of_bars;	
cin	>>	one_weight;	

•  This	code	prompts	the	user	to	enter	data	then	reads	2	data	items	from	cin	
•  The	1st	value	read	is	stored	in	number_of_bars,	the	2nd	value	in	one_weight	
•  Data	entry	can	be	separated	by	spaces	OR	by	return	key	when	entered		
4/10/18	 Matni,	CS16,	Sp18	 14	

Alternative:	cin	>>	number_of_bars	>>	one_weight;	

Entering	Multiple	Data	Input	Items	
•  Multiple	data	items	are	best		separated	by	spaces	
•  Data	is	not	read	until	the	Enter	key	is	pressed	

–  This	allows	user	to	make	corrections	
	
EXAMPLE:		

cin	>>	v1	>>	v2	>>	v3;	
	Requires	3	whitespace	separated	values	
	 	A	whitespace	=	space	OR	tab	OR	return	

•  So,	user	might	type:	
34	45	12<enter	key>		or		34<enter	key>45<enter	key>12<enter	key>	etc…	

Matni,	CS16,	Sp18	 15	Space	chars.	

When	you	see	this,	it	
means	I’m	demonstrating	
code	in	class	AND	will	have	

it	available	on	the	class	
website!	

4/10/18	 Matni,	CS16,	Sp18	 16	

Flow	of	Control	

•  Another	way	to	say:	The	order	in	which	statements	get	executed	

•  Branch:	(verb)	How	a	program	chooses	between	2	alternatives	
–  Usual	way	is	by	using	an	if-else	statement	

4/10/18	 Matni,	CS16,	Sp18	 17	

if	(Boolean	expression)	
			true	statement	
else	
			false	statement	

Implementing	IF/ELSE	Statements	in	C++	
•  As	simple	as:	
	
if	(income	>	30000)	
{	
	taxes_owed	=	0.30	*	30000;	

}	
else	
{	
	taxes_owed	=	0.20	*	30000;	

}	

4/10/18	 Matni,	CS16,	Sp18	 18	

Where’s
	the	se

micolon
??!?	

Curly	braces	are	optional	if	they	contain	only	1	statement	

IF/ELSE	in	C++	
•  To	do	additional	things	in	a	branch,	use	the	{	}	brackets	to	keep	all	the	statements	together	

if	(income	>	30000)		
{	
		taxes_owed	=	0.30	*	30000;	
		category	=	“RICH”;	
		alert_irs	=	true;	
}	//	end	IF	part	of	the	statement	
else		
{	
		taxes_owed	=	0.20	*	30000;	
		category	=	“POOR”;	
		alert_irs	=	false;	
}	//	end	ELSE	part	of	the	statement	

	
	

4/10/18	 Matni,	CS16,	Sp18	 19	

Groups	of	statements	
(sometimes	called	a	block)	
kept	together	with	{		…		}	

Boolean	Statements	in	IF/ELSE	
if	((x	>=	3)	&&	(x	<	6))	
			y	=	10;	

•  The	variable	y	will	be	assigned	10	only	if	x	is	equal	to	3,	4,	or	5	
	

if	!(x	>	5)	y	=	10;	
•  The	variable	y	will	be	assigned	10	if	x	is	NOT	larger	than	5		

(i.e.	if	x	is	4	or	smaller)	
–  DESIGN	PRO-TIP:	Unless	you	really	have	to,		

avoid	the	NOT	logic	operator	when	designing	conditional	statements	

	

4/10/18	 Matni,	CS16,	Sp18	 20	

Beware:			=		vs		==	

•  	=		is	the	assignment	operator	 	 	 	=	=		is	the	equality	operator	
–  Used	to	assign	values	to	variables 	 	 	 	–	Used	to	compare	values	
–  Example:	x	=	3; 	 	 	 	 	 	 	 	 	–	Example:	if	(x	==	3)	y	=	0;	

•  The	compiler	will	actually	accept	this	logical	error:									if	(x	=	3)	y	=	0;	
– Why?	
–  It’s	an	error	of	logic,	not	of	syntax	
–  But	it	stores	3	in	x	instead	of	comparing	x	and	3	
–  Since	the	result	is	3	(non-zero),	the	expression	is	true,	so	y	becomes	0	

4/10/18	 Matni,	CS16,	Sp18	 21	

Simple	Loops 		1:	while	

•  We	use	loops	when	an	action	must	be	repeated	
•  C++	includes	several	ways	to	create	loops	

–  while,	for,	do…while,	etc…	

•  The	while	loop	example:	
	 	int	count_down	=	3;	
	 	while	(count_down	>	0)	
	 	{	
	 	 	cout	<<	"Hello	";	
	 	 	count_down	-=	1;	
	 	}	4/10/18	 22	

Output	is:			
Hello	Hello	Hello	

Simple	Loops 		2:	do-while	
•  Executes	a	block	of	code	at	least	once,	and	then	repeatedly	executes	the	

block	depending	on	a	given	Boolean	condition	at	the	end	of	the	block.	
–  So,	unlike	the	while	loop,	the	Boolean	expression	is	checked	after		
the	statements	have	been	executed		

	 	 	int	flag	=	1;	
	 	 	do	
	 	 	{		
		 	 	 	cout	<<	"Hello	";	
		 	 	 	flag	-=	1;	
	 	 	}		
	 	 	while	(flag	>	0);	

4/10/18	 23	

Why	is	there	a		
semicolon	here??!?	

Output	is:			
Hello 	 	 		

Matni,	CS16,	Sp18	

Simple	Loops 	3:	for	
•  Similar	to	a	while	loop,	but	presents	parameters	differently.	
•  Allows	you	to	initiate	a	counting	variable,	a	check	condition,		

and	a	way	to	increment	your	counter	all	in	one	line.	
	

for	(counter	declaration;	check	condition	statement;	increment	rule)	{…}	
	
	
	 	 	for	(int	count	=	2;	count	<	5;	count++)	
	 	 	{		
		 	 	 	cout	<<	"Hello	";	
	 	 	}		

	
4/10/18	 Matni,	CS16,	Sp18	

Output	is:			
Hello	Hello	Hello	

Increments	and	Decrements	by	1	

In	C++	you	can	increment-by-1	like	this:	
a++	

or	like	this:	
++a	

	
Similarly,	you	can	decrement	by:	

a--			or			--a	

4/10/18	 Matni,	CS16,	Sp18	 25	

more	common	à	

Some	Cool	Uses	of	x++	

•  In	a	while	loop,	you	always	need	to	increment	a	counter	var.	
Example:	
	 	int	max	=	0;	
	 	while	(max	<	4)	
	 	{	
	 	 	cout	<<	“hi”	<<	endl;	
	 	 	max++;	
	 	}	

	
4/10/18	 Matni,	CS16,	Sp18	 26	

What	will	this	print	out?	

Some	Cool	Uses	of	x++	

•  You	can	make	a	slight	change	and	save	a	line	of	code!	
Example:	
	 	int	max	=	0;	
	 	while	(max++	<	4)	
	 	{	
	 	 	cout	<<	“hi”	<<	endl;	
	 	}	

	

4/10/18	 Matni,	CS16,	Sp18	 27	

When	to	use		x++		vs		++x	

4/10/18	 Matni,	CS16,	Sp18	 28	

•  x++	will	assess	x	then	increment	it	
•  ++x	will	increment	x	first,	then	assess	it	

•  95%	of	the	time,	you	will	use	the	first	one	

•  In	while	statements,	it	makes	a	difference		
•  In	for	statements,	it	won’t	make	a	difference	

Examples	

4/10/18	 Matni,	CS16,	Sp18	 29	

for	(int	c	=	0;	c	<	4;	c++)	
	cout	<<	“hi”	<<	endl;	

	
	
	
	
	
for	(int	c	=	0;	c	<	4;	++c)	
	cout	<<	“hi”	<<	endl;	

	

int	max	=	0;	
while	(max++	<	4)	
{	
	cout	<<	“hi”	<<	endl;	

}	

int	max	=	0;	
while	(++max	<	4)	
{	
	cout	<<	“hi”	<<	endl;	

}	
	

Prints	“hi”	4	times	

Prints	“hi”	4	times	

Prints	“hi”	3	times	

Infinite	Loops	
•  Loops	that	never	stop	–	must	be	avoided!		

–  Your	program	will	either	“hang”	or	just	keep	spewing	outputs	for	ever	

•  The	loop	body	should	contain	a	line	that	will	eventually	cause	the	Boolean	
expression	to	become	false	(to	make	the	loop	to	end)	

•  Example:	 	 	 	 	Goal:	Print	all	positive	odd	numbers	less	than	6	
	x	=	1;	
	while	(x	!=	6)	
	{	
			cout	<<	x	<<	endl;	
			x	=	x	+	2;	
	}	4/10/18	 Matni,	CS16,	Sp18	 30	

while	(x	<	6)		

What	is	the	problem	with	this	code?	

What	simple	fix	can	undo	this	bad	design?	

x	will	never	be	6!	Infinite	Loop!	

Using	for-loops	For	Sums
•  To create an accumulated sum, in a for-loop:

	

int	sum	=	0;	
for(int	count	=	0;	count	<	10;	count++)	
			{	
								cin	>>	next;	
								sum	=	sum	+	next;	
			}	
	

•  Note that “sum” must be initialized prior to the loop body!
–  Why?

Matni,	CS16,	Sp18	 31	4/10/18	

Using	for-loops	For	Products
•  Forming an accumulated product is very similar to the sum example

seen earlier

 int	product	=	1;	
	for(int	count	=	0;	count	<	10;	count++)			 		
	{	

								cin	>>	next;	
								product	=	product	*	next;	
			}	

•  Note that “product” must be initialized prior to the loop body
–  Product is initialized to 1, not 0!

Matni,	CS16,	Sp18	 32	4/10/18	

Ending	a	While	Loop	
•  A	for-loop	is	generally	the	choice	when	there	is	a	predetermined	number	of	iterations			
•  When	you	DON’T	have	a	predetermined	number	of	iterations,		

	 	 	 	 	 	 	 	 	 	 	 	 	 	you	will	want	to	use	while	loops	

The	are	3	common	methods	to	END	a	while	loop:	
1.  List	ended	with	a	sentinel	value:	 	Using	a	particular	value	or	calculation	to	signal	the	end	
2.  Ask	before	iterating:	 	 	 	 	Ask	if	the	user	wants	to	continue	before	each	iteration	
3.  Running	out	of	input:	 	 	 	 	Using	the	eof	function	to	indicate	the	end	of	a	file	

	 	 	 	 	 	 	 	 	 	(more	on	this	when	we	discuss	file	I/Os)	

Matni,	CS16,	Sp18	 9	4/10/18	

1.	List	Ended	With	a	Sentinel	Value	
	cout		<<	"Enter	a	list	of	positive	integers.\n"	
							<<	"Place	a	negative	integer	after	the	list	to	quit.\n";	
	sum	=	0;	
	cin	>>	number;	
	while	(number	>	0)	

	 	{	
						cout	<<	“The	double	of	that	is:	”	<<	2*number	<<	endl;	
	 	cin	>>	number;	

	 	}	

– Notice	that	the	sentinel	value	is	read,	but	not	processed	at	the	end	

4/10/18	 Matni,	CS16,	Sp18	 34	

2.	Ask	Before	Iterating	
	sum	=	0;	
	char	ans;	
		
	cout	<<	"Are	there	numbers	in	the	list	(Y/N)?";	
	cin	>>	ans;	

	
	while	((ans	==	'Y')		||	(ans	==	'y'))	

			{	
									//statements	to	read	and	process	the	number	
				
				 	cout	<<	"Are	there	more	numbers(Y/N)?	";	
				cin	>>	ans;	

				}	
	 				4/10/18	 Matni,	CS16,	Sp18	 35	

YOUR	TO-DOs	

q Do	HW3	for	Thursday	
q New	Lab	on	Wednesday!	
	
q Visit	Prof’s	and	TAs‘	office	hours	if	you	need	help!	

q Eat	all	your	vegetables	

4/10/18	 Matni,	CS16,	Sp18	 36	

4/10/18	 Matni,	CS16,	Sp18	 37	

