
Introduction	to	C++	
General	Rules,	Conventions	and	Styles	

CS	16:	Solving	Problems	with	Computers	I	
Lecture	#2	

	
Ziad	Matni	

Dept.	of	Computer	Science,	UCSB	

Administrative	

•  This	class	is	currently	FULL	and	the	waitlist	is	CLOSED	
– Will	not	be	adding	anyone	else 	 	Please	do	not	ask	again	

•  Lab	#1	and	submit.cs	issues	

•  Homework	#1	and	working	on	GauchoSpace	

•  Reminder:	Don’t	leave	your	valuables	behind	in	the	lab	(or	class)!	

4/5/18	 Matni,	CS16,	Sp18	 2	

Lecture	Outline	

•  Basic	Rules	and	Conventions	of	C++	

•  Variables	and	Assignments	

•  Data	Types	and	Expressions	

•  Input	and	Output	

4/5/18	 Matni,	CS16,	Sp18	 3	

4/5/18	 Matni,	CS16,	Sp18	 4	

1-4:	 	Program	start	
5:	 	 	Variable	declaration	
6-20:	 	Statements	
21-22:	 	Program	end	

cout	<<	“some	string	or	another”	; 	 		
//output	stream	statement	
	

cin	>>	some_variable;	 	 	 		
//input	stream	statement	
	

cout	and	cin	are	objects	defined	in	the	
library	iostream	

N
ot
e	
th
e	
us
e	
of
	ta

bb
ed
	sp

ac
es
	

What’s	The	Difference???	

4/5/18	 Matni,	CS16,	Sp18	 5	

#include	<iostream>	
using	namespace	std;	
	
int	main()			
{	
	int	n	=	5;	
	while	(n	<	10)		
	{	
	 	cout	<<	n;	
	 	n	=	n	+	1;	
	}	

	
		return	0;	
}	

#include	<iostream>	
using	namespace	std;int	main()
{int	n=5;while	(n<10)
{cout<<n;n=n+1;}return	0;}	

A	compiler	program	can	read	either	one!	
	
But	which	one	can	YOU	read	better?!?!	J	

Program	Style	

•  The	layout	of	a	program	is	designed	mainly	to	make	it	readable	by	humans	

•  C++	Compilers	accept	almost	any	patterns	of	line	breaks	and	indentations!	
–  So	layout	conventions	are	there	not	for	the	machine,	but	for	the	human	
–  Convention	vs.	Rules	–	what’s	the	difference??	

•  Conventions	have	been	established,	for	example:	
1.  Place	opening	brace	‘{‘	and	closing	brace	‘}’	on	a	line	by	themselves	
2.  Use	indented	statements	(i.e.	use	tabbed	spaces)	
3.  Use	only	one	statement	per	line	

4/5/18	 Matni,	CS16,	Sp18	 6	

We	will	check	for	this	
convention	use	in	your	

lab	assignments!	

Some	C++	Rules	and	Conventions	

•  Variables	are	declared	before	they	are	used	
–  Typically	at	the	beginning	of	program	

•  Statements	(not	always	lines)	end	with	a	semi-colon			;	

•  Use	curly-brackets		{	…	}		
	 	 	 	 	to	encapsulate	groups	of	statements	that	belong	together	
–  Parentheses		(…)	have	a	different	use	in	C++	
–  As	do	square	brackets	[…]	
–  They	are	not	interchangeable!	

4/5/18	 Matni,	CS16,	Sp18	 7	

Breaking	these	rules	
is	considered	a		
syntax	error:		
your	program		
won’t	compile!	

Some	C++	Rules	and	Conventions	

•  Include	directives	(like	#include	<iostream>)	are	always		
placed	in	the	beginning	of	the	program	before	any	code	
–  Tells	the	compiler	where	to	find	information	about	objects	used	in	the	program	

•  using	namespace	std;	
–  Tells	the	compiler	to	use	names	of	objects	in	iostream	in	a	“standard”	way	

•  main	functions	end	with	a	“return	0;”	statement	
–  You	should	always	have	this	–	although	it’s	a	convention,	not	a	strict	rule	

4/5/18	 Matni,	CS16,	Sp18	 8	

Reminder:	What	are	Variables	

•  A	variable	is	a	symbolic	reference	to	data	

•  The	variable's	name	represents	what	information	it	contains	

•  They	are	called	“variables”	because	the	data	can	change		
while	the	operations	on	the	variable	remain	the	same	

•  If	variables	are	of	the	same	type,		
	 	 	 	 	 	you	can	perform	operations	on	them	

9	4/5/18	 Matni,	CS16,	Sp18	

Variables	in	C++	

•  In	C++,		
variables	are	placeholders	for	memory	locations	in	the	CPU	

•  We	can	assign	a	value	to	them	
•  We	can	change	that	value	stored	
•  BUT	we	cannot	erase	the	memory	location	of	that	particular	

variable	

4/5/18	 Matni,	CS16,	Sp18	 10	

Types	of	C++	Variables:	General	
•  There	are	3	properties	to	a	variable:	

Variables	have	a	name	(identifier),	a	type,	and	a	value	attached	to	them	

•  Integers	
–  Whole	numbers	
–  Example:	122,	53,	-47	

•  Floating	Point	
–  Numbers	with	decimal	points	
–  Example:	122.5,	53.001,	-47.201	

•  Boolean	
–  Takes	on	one	of	two	values:	

“true”	or	“false”	

•  Character	
–  A	single	alphanumeric	
–  Example:	“c”,	“H”,	“%”	

•  Note	the	use	of	quotation	marks	

•  String	
–  A	string	of	characters	
–  Example:	“baby”,	“what	the	!@$?”	

•  Note	the	use	of	quotation	marks	

11	

There are many other types of variables – you also make your own types!
4/5/18	 Matni,	CS16,	Sp18	

About	Variable	Names	

•  Good	variable	name:	indicates	what	data	is	stored	inside	it	
– A	good	variable	name	is	a	“noun”	or	“noun	phrase”,	e.g.:	FirstName	
– A	good	function	name	is	a	“verb”	or	“verb	phrase”,	e.g.:	SortNumbers()	

•  They	should	make	sense	to	a	non	computer	programmer	
– Avoid	generic	names,	like	“var1”	or	“x”	

•  Example:	 		
	 	name	=	“Bob	Roberts”		 	 	 	 	is	not	descriptive	enough,	but	
	 	candidate_name	=	“Bob	Roberts”	 	is	better	

	
12	4/5/18	 Matni,	CS16,	Sp18	

We	will	check	for	this	
convention	use	in	your	

lab	assignments!	

Variable	Name	Rules	in	C++	

Variable	names	in	C++	must	adhere	to	certain	rules.	

•  They	MUST	start	with	either	a	letter	or	an	underscore	(_) 	 		
•  They	cannot	start	with	a	number	
•  The	rest	of	the	letters	can	be	alphanumerics	or	underscores.	
•  They	cannot	contain	spaces	or	dots	or	other	symbols 		

•  Which	of	these	is	a	legal	variable	name	in	C++	
4MyBae 	 	_StopCondition	 	MyLittlePony_007 	 	James.Bond	

13	4/5/18	 Matni,	CS16,	Sp18	

Breaking	these	rules	
is	considered	a		
syntax	error:		
your	program		
won’t	compile!	

Variable	Name	Casing	
When	naming	variables,	functions,	etc…	

•  Snake	Case: 	 	Using	underscore	character	(‘_’)	
–  Example:				mortgage_amount	 	function_fun()	
–  Associated	with	C,	C++	programmers	

•  Camel	Case: 	Using	upper-case	letters	to	separate	words	
–  Example: 	MortgageAmount	 	FunctionFun()	
–  Associated	with	Java	programmers	

•  For	this	class,	YOU	CAN	USE	EITHER!	But	PICK	ONE	AND	BE	CONSISTENT!!!	

4/5/18	 Matni,	CS16,	Sp18	 14	

We	will	check	for	this	
convention	use	in	your	

lab	assignments!	

Reserved	Keywords	

•  Used	for	specific	purposes	by	C++	
•  Must	be	used	as	they	are	defined	in	C++	
•  Cannot	be	used	as	identifiers		
	
EXAMPLE:	
You	cannot	call	a	variable	“int”	or	“else”	
	
For	a	list	of	all	C++	keywords,	see:	
http://en.cppreference.com/w/cpp/keyword		

4/5/18	 Matni,	CS16,	Sp18	 15	

Breaking	these	rules	
is	considered	a		
syntax	error:		
your	program		
won’t	compile!	

Other	Styling	Conventions	

•  Comments:	Must	have	them	
–  In	C++,	use	//	for	one	line	at	a	time,	or	/*	…	*/	for	multiple	lines	

•  Tabbing	and	Braces:	
– Code	inside	of	main()	must	be	tabbed	appropriately	
•  Even	one-liner	if-statements	

– Open	and	close	curly	braces	{…}	on	new	lines		
	 	 	 	 	 	 	 	and	align	them	with	the	block	

4/5/18	 Matni,	CS16,	Sp18	 16	

We	will	check	for	this	
convention	use	in	your	

lab	assignments!	

Example	of	Good	Styling	
int	main()	
{	

	//	Get	user	input	on	number	of	people	
	//	Then	determine	if	there	is	room	for	them	
	int	max_capacity(100),	num_people;	
	cout	<<	“Enter	number	of	people:	”;		
	cin	>>	num_people;	
	if	(num_people	>	max_capacity)	
	{	
	 	cout	<<	“Too	many	people!	By	a	count	of	”;	
	 	cout	<<	num_people	–	max_capacity;	
	}	
	else	
	{	
	 	cout	<<	“Ok!”;	
	}	
	return	0;	

}	

Declaring	Variables	

•  Variables	in	C++	must	be	declared	___________they	are	used!	
	
Declaration	syntax:									Type_name	Variable_1	,	Variable_2,	.	.	.	;	

	
Examples:	
double		average,	m_score,	total_score;	
int		id_num,	height,	weight,	age,	shoesize;	
int		points;	

4/5/18	 Matni,	CS16,	Sp18	 18	

before	

Initializing/Assigning		
Variable	Values	

•  When	you	declare	a	variable,	it’s	not	created	with	any	value	in	particular	

•  It	is	good	practice	to	initialize	variables	before	using	them	
–  Otherwise	they	will	contain	whatever	value	is	in	that	memory	location	

•  Do	not	declare	variables	inside	loops!!!	
	
EXAMPLE:	

int	num,	doz;	
num	=	5;	
sum(5);	
doz	=	num	+	7;	

4/5/18	 Matni,	CS16,	Sp18	 19	

num	is	initialized	to	5	
	

and	so	is	sum	

doz	is	initialized	to	(num		+	7)	

Using	=	or	()		
for	assignment	of		
declared	values		
is	up	to	you!	

Assignment	vs.	Algebraic	Statements	

•  C++	syntax	is	NOT	the	same	as	in	Algebra	
EXAMPLE:	

	 	number	=	number	+	3	
In	C++,	it	means:	
– take	the	current	value	of	“number”,		
– add	3	to	it,		
– then	reassign	that	new	value	to	the	variable	“number”	

4/5/18	 Matni,	CS16,	Sp18	 20	

C++	shortcut:	
	number	+=		3	
Also	works	with:	

-=		*=		/=		%=	etc…	

Variable	Comparisons	

•  When	variables	are	being	compared	to	one	another,	we	
use	different	symbols	

•  a	is	equal	to	b 	 	 	 	 	 	 	a	==	b	
•  a	is	not	equal	to	b	 	 	 	 	 	a	!=	b	
•  a	is	larger	than	b 	 	 	 	 	 	a	>	b	
•  a	is	larger	than	or	equal	to	b	 	a	>=	b	
•  a	is	smaller	that	b 	 	 	 	 	 	a	<	b	
•  a	is	smaller	than	or	equal	to	b 	a	<=	b	

Note:		
The	outcome	of	these	
comparisons	are	
always	either	true	or	
false	
	
i.e.	Boolean	Boolean	variables:	
false	 	 	 	=	0	
true 	 	 	≠	0	
(note	the	lower-case)	

4/5/18	 Matni,	CS16,	Sp18	

Variable	Types	in	C++	
1.	Integers	

int:	Basic	integer	(whole	numbers,	positive	OR	negative)	
	
•  Usually	32	or	64	bits	wide	
–  So,	if	it’s	32	bits	wide,	the	range	is	-231	to	+231	-	1	
Which	is:	-2,147,483,648	to	+2,147,483,647	

•  You	can	express	even	larger	(+ve	and	–ve)	integers	using:	
	 	 	 	long	int	and	long	long	int	

•  You	can	express	only	positive	integers	(and	thus	get	a	longer	+ve	range)	using:	
	 	 	 	unsigned	int	

4/5/18	 Matni,	CS16,	Sp18	 22	

Variable	Types	in	C++	
2.	Real	(rational)	numbers	

double:	Real	numbers,	positive	OR	negative	
	
Type	double	can	be	written	in	two	ways:	
•  Simple	form	must	include	a	decimal	point	
–  Examples:	34.1,	23.0034,	1.0,	-89.9	

•  Alternate	form:	Floating	Point	Notation	(Scientific	Notation)	
– 3.41e1		 	means	34.1	
– 3.67e17	 	means	367000000000000000.0 	(17	digits	after	“3”)	
– 5.89e-6	 	means	0.00000589		 	 	 	 	(6	decimal	places	before	“5”)	

•  Number	left	of	e	(for	exponent)	does	not	require	a	decimal	point	
•  The	exponent	cannot	contain	a	decimal	point	

4/5/18	 Matni,	CS16,	Sp18	 23	

Variable	Types	in	C++	
3.	Characters	

char:	single	character	
	
•  Can	be	any	single	character	from	the	keyboard	
•  To	declare	a	variable	of	type	char:	

char	letter;		

•  Character	constants	are	enclosed	in	single	quotes	
char	letter	=	'a';		

4/5/18	 Matni,	CS16,	Sp18	 24	

Variable	Types	in	C++	
4.	Strings	

string:	a	collection	of	characters	(a	string	of	characters)	
	
•  string	is	a	class,	different	from	the	primitive	data	types	discussed	so	far.	

–  We’ll	discuss	classes	further	in	the	course	

•  Using	C++	strings	requires	you	to	include	the	“string”	module:	
#include	<string>	

•  To	declare	a	variable	of	type	string:	
string	name	=	“Homer	Simpson”;		

•  There	are	“older”	types	of	strings	called	C-Strings	that	are	still	in	use	in	C++	
–  More	on	those	later…	

4/5/18	 Matni,	CS16,	Sp18	 25	

Note	on	‘	vs	“	
•  Single	quotes	are	only	used	for	char	types	
•  Double	quotes	are	only	used	for	string	types	

•  So,	which	of	these	is	ok	and	which	isn’t?	
char	letter1	=	“a”;	
char	letter2	=	‘b’;	
string	town1	=	“Mayberry”;	
string	town2	=	‘Xanadu’;	

4/5/18	 Matni,	CS16,	Sp18	 26	

Type	Compatibilities	

•  General	Rule:	You	cannot	operate	on	differently	typed	variables.	
–  Except	with	int	and	double	types	

–  Just	like	in	most	computer	languages	

•  So,	if: 	 	 	 	 	 	 	 	 	then:	
int	my_var	=	2; 	 	 	 	 	my_var	+	my_char		 	is	a	syntax	error	

char	my_char	=	‘x’;	

	

•  There	are	rules	with	operations	between	int	and	double…	
	

4/5/18	 Matni,	CS16,	Sp18	 27	

int	ßà	double	
•  Variables	of	type	double	should	not	be	assigned	to	variables	of	type	int		

•  Variable	of	type	int,	however,	can	normally	be	stored	in	variables	of	type	double	

EXAMPLE: 	 	double	numero;	
	 	 	 	numero	=	2;	

	
•  numero	will	contain	2.0000	(unfixed	number	of	places	after	decimal	pt)	

EXAMPLE: 	 	int	numero;	
	 	 	 	numero	=	2.789;	

	

•  numero	will	contain	2	

4/5/18	 Matni,	CS16,	Sp18	 28	

int	ßà	double	

4/5/18	 Matni,	CS16,	Sp18	 29	

So,	what	happens	with	variable	z	here?	
	int	x(9);	
	double	y(4),	z;	
	z	=	x	/	y;	
	cout	<<	z;	

	
This	prints	out:		2.25	

So,	what	happens	with	variable	p	here?	
	int	n(4);	
	double	m(9),	p;	
	p	=	m	/	n;	
	cout	<<	p;	

	
This	prints	out:		2.25	

If	one	or	both	operands	are	double,	the	result	is	double		

So,	what	happens	with	variable	c	here?	
	int	a(9),	b(4);	
	double	c;	
	c	=	a	/	b;	
	cout	<<	c;	

	
This	prints	out:		2	

Variable	Types	in	C++	
5.	Booleans	

bool:	a	binary	value	of	either	“true”	(1)	or	“false”	(0).	
•  You	can	perform	LOGICAL	operations	on	this	type:	
–  ||	 	Logical	OR	
– && 	Logical	AND		

Also,	when	doing	comparisons,	the	result	is	a	Boolean	type.	
EXAMPLE:	What	will	this	print	out??	
	 	int	a	=	44,	b	=	9;	
	 	bool	c;	
	 	c	=	(a	==	b);	
	 	cout	<<	c;	

4/5/18	 Matni,	CS16,	Sp18	 30	

Ans:			0	

Arithmetic	Expressions	

•  Precedence	rules	for	operators	are	the	same	as	what	you	used		
in	your	algebra	classes	
– EXAMPLE:	x	+	y	*	z 		 	(y	is	multiplied	by	z	first)	

•  Use	parentheses	to	force	the	order	of	operations	(recommended)		
– EXAMPLE:	(x	+	y)	*	z	 	(x	and	y	are	added	first)		

4/5/18	 Matni,	CS16,	Sp18	 31	

Operator	Shorthands	

•  Some	expressions	occur	so	often	that	C++	contains	shorthand	
operators	for	them	

•  All	arithmetic	operators	can	be	used	this	way:	

–  count	=	count	+	2;		 	---can	be	written	as---		count	+=	2;	
–  bonus	=	bonus	*	2;	 	---can	be	written	as---		bonus	*=	2;	
–  time	=	time	/	factor;	 	---can	be	written	as---		time	/=	factor;	
–  remainder	=	remainder	%	(cnt1+	cnt2);		

	 	 	 	 	 	 	---can	be	written	as---		remainder	%=	(cnt1	+	cnt2);		

4/5/18	 Matni,	CS16,	Sp18	 32	

Review	of	Boolean	Expressions:	
AND,	OR,	NOT	

AND	operator	 	&&	
•  (expression	1)	&&	(expression	2)	
•  True	if	both	expressions	are	true		

OR	operator		 	||	
•  (expression	1)	||	(expression	2)	
•  True	if	either	expression	is	true		

NOT	operator	 	!	
•  !(expression)	
•  False,	if	the	expression	is	True	(and	vice	versa)	

Note:	no	space	between	each	‘|’	character!	

Truth	Tables	for	Boolean	Operations	

4/5/18	 Matni,	CS16,	Sp18	 34	

X	 Y	 X	&&	Y	
F	 F	
F	 T	
T	 F	
T	 T	

X	 Y	 X	||	Y	
F	 F	
F	 T	
T	 F	
T	 T	

F	
F	
F	
T	

F	
T	
T	
T	

X	 !	X	
F	
T	

T	
F	

AND	 OR	 NOT	

4.	AND	and	OR	are	commutative,	but	not	when	mixed	(so,	order	matters)	
			X	&&	Y			=			Y	&&	X	
			X	&&	(Y	||	Z)				is	not	the	same	as				(X	&&	Y)	||	Z	

IMPORTANT	NOTES:	
1.	AND	and	OR	are	not	opposites	of	each	other!!	
2.	AND:	if	just	one	condition	is	false,	then	the	outcome	is	false	
3.	OR:				if	at	least	one	condition	is	true,	then	the	outcome	is	true	

Precedence	Rules	on	Operations	in	C++	

4/5/18	 Matni,	CS16,	Sp18	 35	

•  If	parenthesis	are	omitted	from	C++	expressions,	the	default	precedence	of	
operations	is:	

YOUR	TO-DOs	

q  Finish	Lab1	by	Monday	
q  Do	HW2	by	Tuesday	
	
q  Visit	Prof’s	and	TAs‘	office	hours	if	you	need	help!	

Ø  Prof.’s	hours	are	MONDAY	from	11	AM	to	12	PM	(or	by	appointment!)	

q  Reverse	global	warming	
q  Bonus	points	for	ending	world	hunger	

4/6/18	 Matni,	CS16,	Sp18	 36	

4/6/18	 Matni,	CS16,	Sp18	 37	

